Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-20\right)\left(600-10x+250\right)=5500
Use the distributive property to multiply -10 by x-25.
\left(x-20\right)\left(850-10x\right)=5500
Add 600 and 250 to get 850.
850x-10x^{2}-17000+200x=5500
Apply the distributive property by multiplying each term of x-20 by each term of 850-10x.
1050x-10x^{2}-17000=5500
Combine 850x and 200x to get 1050x.
1050x-10x^{2}-17000-5500=0
Subtract 5500 from both sides.
1050x-10x^{2}-22500=0
Subtract 5500 from -17000 to get -22500.
-10x^{2}+1050x-22500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1050±\sqrt{1050^{2}-4\left(-10\right)\left(-22500\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 1050 for b, and -22500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1050±\sqrt{1102500-4\left(-10\right)\left(-22500\right)}}{2\left(-10\right)}
Square 1050.
x=\frac{-1050±\sqrt{1102500+40\left(-22500\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-1050±\sqrt{1102500-900000}}{2\left(-10\right)}
Multiply 40 times -22500.
x=\frac{-1050±\sqrt{202500}}{2\left(-10\right)}
Add 1102500 to -900000.
x=\frac{-1050±450}{2\left(-10\right)}
Take the square root of 202500.
x=\frac{-1050±450}{-20}
Multiply 2 times -10.
x=-\frac{600}{-20}
Now solve the equation x=\frac{-1050±450}{-20} when ± is plus. Add -1050 to 450.
x=30
Divide -600 by -20.
x=-\frac{1500}{-20}
Now solve the equation x=\frac{-1050±450}{-20} when ± is minus. Subtract 450 from -1050.
x=75
Divide -1500 by -20.
x=30 x=75
The equation is now solved.
\left(x-20\right)\left(600-10x+250\right)=5500
Use the distributive property to multiply -10 by x-25.
\left(x-20\right)\left(850-10x\right)=5500
Add 600 and 250 to get 850.
850x-10x^{2}-17000+200x=5500
Apply the distributive property by multiplying each term of x-20 by each term of 850-10x.
1050x-10x^{2}-17000=5500
Combine 850x and 200x to get 1050x.
1050x-10x^{2}=5500+17000
Add 17000 to both sides.
1050x-10x^{2}=22500
Add 5500 and 17000 to get 22500.
-10x^{2}+1050x=22500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+1050x}{-10}=\frac{22500}{-10}
Divide both sides by -10.
x^{2}+\frac{1050}{-10}x=\frac{22500}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-105x=\frac{22500}{-10}
Divide 1050 by -10.
x^{2}-105x=-2250
Divide 22500 by -10.
x^{2}-105x+\left(-\frac{105}{2}\right)^{2}=-2250+\left(-\frac{105}{2}\right)^{2}
Divide -105, the coefficient of the x term, by 2 to get -\frac{105}{2}. Then add the square of -\frac{105}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-105x+\frac{11025}{4}=-2250+\frac{11025}{4}
Square -\frac{105}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-105x+\frac{11025}{4}=\frac{2025}{4}
Add -2250 to \frac{11025}{4}.
\left(x-\frac{105}{2}\right)^{2}=\frac{2025}{4}
Factor x^{2}-105x+\frac{11025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{105}{2}\right)^{2}}=\sqrt{\frac{2025}{4}}
Take the square root of both sides of the equation.
x-\frac{105}{2}=\frac{45}{2} x-\frac{105}{2}=-\frac{45}{2}
Simplify.
x=75 x=30
Add \frac{105}{2} to both sides of the equation.