Solve for E (complex solution)
\left\{\begin{matrix}E=\frac{2x}{y}\text{, }&y\neq 0\\E\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for E
\left\{\begin{matrix}E=\frac{2x}{y}\text{, }&y\neq 0\\E\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x
x=\frac{Ey}{2}
Share
Copied to clipboard
x\frac{\mathrm{d}}{\mathrm{d}x}(y)-2y\frac{\mathrm{d}}{\mathrm{d}x}(y)=2x-yE
Use the distributive property to multiply x-2y by \frac{\mathrm{d}}{\mathrm{d}x}(y).
2x-yE=x\frac{\mathrm{d}}{\mathrm{d}x}(y)-2y\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
-yE=x\frac{\mathrm{d}}{\mathrm{d}x}(y)-2y\frac{\mathrm{d}}{\mathrm{d}x}(y)-2x
Subtract 2x from both sides.
\left(-y\right)E=-2x
The equation is in standard form.
\frac{\left(-y\right)E}{-y}=-\frac{2x}{-y}
Divide both sides by -y.
E=-\frac{2x}{-y}
Dividing by -y undoes the multiplication by -y.
E=\frac{2x}{y}
Divide -2x by -y.
x\frac{\mathrm{d}}{\mathrm{d}x}(y)-2y\frac{\mathrm{d}}{\mathrm{d}x}(y)=2x-yE
Use the distributive property to multiply x-2y by \frac{\mathrm{d}}{\mathrm{d}x}(y).
2x-yE=x\frac{\mathrm{d}}{\mathrm{d}x}(y)-2y\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
-yE=x\frac{\mathrm{d}}{\mathrm{d}x}(y)-2y\frac{\mathrm{d}}{\mathrm{d}x}(y)-2x
Subtract 2x from both sides.
\left(-y\right)E=-2x
The equation is in standard form.
\frac{\left(-y\right)E}{-y}=-\frac{2x}{-y}
Divide both sides by -y.
E=-\frac{2x}{-y}
Dividing by -y undoes the multiplication by -y.
E=\frac{2x}{y}
Divide -2x by -y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}