Evaluate
0
Factor
0
Share
Copied to clipboard
\left(x-2y\right)^{2}+\left(x-2y\right)\left(-x+2y\right)
Multiply x-2y and -2y+x to get \left(x-2y\right)^{2}.
x^{2}-4xy+4y^{2}+\left(x-2y\right)\left(-x+2y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2y\right)^{2}.
x^{2}-4xy+4y^{2}+x\left(-x\right)+2xy-2y\left(-x\right)-4y^{2}
Apply the distributive property by multiplying each term of x-2y by each term of -x+2y.
x^{2}-4xy+4y^{2}+x\left(-x\right)+2xy+2yx-4y^{2}
Multiply -2 and -1 to get 2.
x^{2}-4xy+4y^{2}+x\left(-x\right)+4xy-4y^{2}
Combine 2xy and 2yx to get 4xy.
x^{2}+4y^{2}+x\left(-x\right)-4y^{2}
Combine -4xy and 4xy to get 0.
x^{2}+x\left(-x\right)
Combine 4y^{2} and -4y^{2} to get 0.
x^{2}+x^{2}\left(-1\right)
Multiply x and x to get x^{2}.
0
Combine x^{2} and x^{2}\left(-1\right) to get 0.
\left(x-2y\right)\left(-2y+x-x+2y\right)
Factor out common term x-2y by using distributive property.
0
Consider -2y+x-x+2y. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}