Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+x\sqrt{5}-2x+4-2\sqrt{5}-\sqrt{5}x+2\sqrt{5}-\left(\sqrt{5}\right)^{2}
Apply the distributive property by multiplying each term of x-2-\sqrt{5} by each term of x-2+\sqrt{5}.
x^{2}-4x+x\sqrt{5}+4-2\sqrt{5}-\sqrt{5}x+2\sqrt{5}-\left(\sqrt{5}\right)^{2}
Combine -2x and -2x to get -4x.
x^{2}-4x+4-2\sqrt{5}+2\sqrt{5}-\left(\sqrt{5}\right)^{2}
Combine x\sqrt{5} and -\sqrt{5}x to get 0.
x^{2}-4x+4-\left(\sqrt{5}\right)^{2}
Combine -2\sqrt{5} and 2\sqrt{5} to get 0.
x^{2}-4x+4-5
The square of \sqrt{5} is 5.
x^{2}-4x-1
Subtract 5 from 4 to get -1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+x\sqrt{5}-2x+4-2\sqrt{5}-\sqrt{5}x+2\sqrt{5}-\left(\sqrt{5}\right)^{2})
Apply the distributive property by multiplying each term of x-2-\sqrt{5} by each term of x-2+\sqrt{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+x\sqrt{5}+4-2\sqrt{5}-\sqrt{5}x+2\sqrt{5}-\left(\sqrt{5}\right)^{2})
Combine -2x and -2x to get -4x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+4-2\sqrt{5}+2\sqrt{5}-\left(\sqrt{5}\right)^{2})
Combine x\sqrt{5} and -\sqrt{5}x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+4-\left(\sqrt{5}\right)^{2})
Combine -2\sqrt{5} and 2\sqrt{5} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+4-5)
The square of \sqrt{5} is 5.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x-1)
Subtract 5 from 4 to get -1.
2x^{2-1}-4x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
2x^{1}-4x^{1-1}
Subtract 1 from 2.
2x^{1}-4x^{0}
Subtract 1 from 1.
2x-4x^{0}
For any term t, t^{1}=t.
2x-4
For any term t except 0, t^{0}=1.