Solve for x
x=\frac{2\left(y+6\right)}{y+3}
y\neq -3
Solve for y
y=-\frac{3\left(x-4\right)}{x-2}
x\neq 2
Graph
Share
Copied to clipboard
xy+3x-2y-6=6
Use the distributive property to multiply x-2 by y+3.
xy+3x-6=6+2y
Add 2y to both sides.
xy+3x=6+2y+6
Add 6 to both sides.
xy+3x=12+2y
Add 6 and 6 to get 12.
\left(y+3\right)x=12+2y
Combine all terms containing x.
\left(y+3\right)x=2y+12
The equation is in standard form.
\frac{\left(y+3\right)x}{y+3}=\frac{2y+12}{y+3}
Divide both sides by y+3.
x=\frac{2y+12}{y+3}
Dividing by y+3 undoes the multiplication by y+3.
x=\frac{2\left(y+6\right)}{y+3}
Divide 12+2y by y+3.
xy+3x-2y-6=6
Use the distributive property to multiply x-2 by y+3.
xy-2y-6=6-3x
Subtract 3x from both sides.
xy-2y=6-3x+6
Add 6 to both sides.
xy-2y=12-3x
Add 6 and 6 to get 12.
\left(x-2\right)y=12-3x
Combine all terms containing y.
\frac{\left(x-2\right)y}{x-2}=\frac{12-3x}{x-2}
Divide both sides by x-2.
y=\frac{12-3x}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
y=\frac{3\left(4-x\right)}{x-2}
Divide 12-3x by x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}