Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-10x+16=-9
Use the distributive property to multiply x-2 by x-8 and combine like terms.
x^{2}-10x+16+9=0
Add 9 to both sides.
x^{2}-10x+25=0
Add 16 and 9 to get 25.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Multiply -4 times 25.
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
Add 100 to -100.
x=-\frac{-10}{2}
Take the square root of 0.
x=\frac{10}{2}
The opposite of -10 is 10.
x=5
Divide 10 by 2.
x^{2}-10x+16=-9
Use the distributive property to multiply x-2 by x-8 and combine like terms.
x^{2}-10x=-9-16
Subtract 16 from both sides.
x^{2}-10x=-25
Subtract 16 from -9 to get -25.
x^{2}-10x+\left(-5\right)^{2}=-25+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-25+25
Square -5.
x^{2}-10x+25=0
Add -25 to 25.
\left(x-5\right)^{2}=0
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-5=0 x-5=0
Simplify.
x=5 x=5
Add 5 to both sides of the equation.
x=5
The equation is now solved. Solutions are the same.