Solve for x
x=1
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
x^{2}-3x+2=-2\left(1-x\right)^{2}
Use the distributive property to multiply x-2 by x-1 and combine like terms.
x^{2}-3x+2=-2\left(1-2x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
x^{2}-3x+2=-2+4x-2x^{2}
Use the distributive property to multiply -2 by 1-2x+x^{2}.
x^{2}-3x+2-\left(-2\right)=4x-2x^{2}
Subtract -2 from both sides.
x^{2}-3x+2+2=4x-2x^{2}
The opposite of -2 is 2.
x^{2}-3x+2\times 2=4x-2x^{2}
Combine 2 and 2 to get 2\times 2.
x^{2}-3x+2\times 2-4x=-2x^{2}
Subtract 4x from both sides.
x^{2}-3x+4-4x=-2x^{2}
Multiply 2 and 2 to get 4.
x^{2}-7x+4=-2x^{2}
Combine -3x and -4x to get -7x.
x^{2}-7x+4+2x^{2}=0
Add 2x^{2} to both sides.
3x^{2}-7x+4=0
Combine x^{2} and 2x^{2} to get 3x^{2}.
a+b=-7 ab=3\times 4=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-4 b=-3
The solution is the pair that gives sum -7.
\left(3x^{2}-4x\right)+\left(-3x+4\right)
Rewrite 3x^{2}-7x+4 as \left(3x^{2}-4x\right)+\left(-3x+4\right).
x\left(3x-4\right)-\left(3x-4\right)
Factor out x in the first and -1 in the second group.
\left(3x-4\right)\left(x-1\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=1
To find equation solutions, solve 3x-4=0 and x-1=0.
x^{2}-3x+2=-2\left(1-x\right)^{2}
Use the distributive property to multiply x-2 by x-1 and combine like terms.
x^{2}-3x+2=-2\left(1-2x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
x^{2}-3x+2=-2+4x-2x^{2}
Use the distributive property to multiply -2 by 1-2x+x^{2}.
x^{2}-3x+2-\left(-2\right)=4x-2x^{2}
Subtract -2 from both sides.
x^{2}-3x+2+2=4x-2x^{2}
The opposite of -2 is 2.
x^{2}-3x+2\times 2=4x-2x^{2}
Combine 2 and 2 to get 2\times 2.
x^{2}-3x+2\times 2-4x=-2x^{2}
Subtract 4x from both sides.
x^{2}-3x+4-4x=-2x^{2}
Multiply 2 and 2 to get 4.
x^{2}-7x+4=-2x^{2}
Combine -3x and -4x to get -7x.
x^{2}-7x+4+2x^{2}=0
Add 2x^{2} to both sides.
3x^{2}-7x+4=0
Combine x^{2} and 2x^{2} to get 3x^{2}.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\times 4}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -7 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\times 4}}{2\times 3}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-12\times 4}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 3}
Multiply -12 times 4.
x=\frac{-\left(-7\right)±\sqrt{1}}{2\times 3}
Add 49 to -48.
x=\frac{-\left(-7\right)±1}{2\times 3}
Take the square root of 1.
x=\frac{7±1}{2\times 3}
The opposite of -7 is 7.
x=\frac{7±1}{6}
Multiply 2 times 3.
x=\frac{8}{6}
Now solve the equation x=\frac{7±1}{6} when ± is plus. Add 7 to 1.
x=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x=\frac{6}{6}
Now solve the equation x=\frac{7±1}{6} when ± is minus. Subtract 1 from 7.
x=1
Divide 6 by 6.
x=\frac{4}{3} x=1
The equation is now solved.
x^{2}-3x+2=-2\left(1-x\right)^{2}
Use the distributive property to multiply x-2 by x-1 and combine like terms.
x^{2}-3x+2=-2\left(1-2x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
x^{2}-3x+2=-2+4x-2x^{2}
Use the distributive property to multiply -2 by 1-2x+x^{2}.
x^{2}-3x+2-4x=-2-2x^{2}
Subtract 4x from both sides.
x^{2}-7x+2=-2-2x^{2}
Combine -3x and -4x to get -7x.
x^{2}-7x+2+2x^{2}=-2
Add 2x^{2} to both sides.
3x^{2}-7x+2=-2
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-7x=-2-2
Subtract 2 from both sides.
3x^{2}-7x=-4
Subtract 2 from -2 to get -4.
\frac{3x^{2}-7x}{3}=-\frac{4}{3}
Divide both sides by 3.
x^{2}-\frac{7}{3}x=-\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{4}{3}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{1}{36}
Add -\frac{4}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{6}\right)^{2}=\frac{1}{36}
Factor x^{2}-\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
x-\frac{7}{6}=\frac{1}{6} x-\frac{7}{6}=-\frac{1}{6}
Simplify.
x=\frac{4}{3} x=1
Add \frac{7}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}