Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}+4x^{2}-3x-18=6\left(x+3\right)
Use the distributive property to multiply x-2 by x^{2}+6x+9 and combine like terms.
x^{3}+4x^{2}-3x-18=6x+18
Use the distributive property to multiply 6 by x+3.
x^{3}+4x^{2}-3x-18-6x=18
Subtract 6x from both sides.
x^{3}+4x^{2}-9x-18=18
Combine -3x and -6x to get -9x.
x^{3}+4x^{2}-9x-18-18=0
Subtract 18 from both sides.
x^{3}+4x^{2}-9x-36=0
Subtract 18 from -18 to get -36.
±36,±18,±12,±9,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -36 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=3
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+7x+12=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+4x^{2}-9x-36 by x-3 to get x^{2}+7x+12. Solve the equation where the result equals to 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 12}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 7 for b, and 12 for c in the quadratic formula.
x=\frac{-7±1}{2}
Do the calculations.
x=-4 x=-3
Solve the equation x^{2}+7x+12=0 when ± is plus and when ± is minus.
x=3 x=-4 x=-3
List all found solutions.