Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{\left(x-2\right)\left(x+1\right)}{6k\left(x+2\right)}\text{, }&x\neq -2\text{ and }k\neq 0\\h\in \mathrm{C}\text{, }&\left(x=2\text{ or }x=-1\right)\text{ and }k=0\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{\left(x-2\right)\left(x+1\right)}{6h\left(x+2\right)}\text{, }&x\neq -2\text{ and }h\neq 0\\k\in \mathrm{C}\text{, }&\left(x=2\text{ or }x=-1\right)\text{ and }h=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{\left(x-2\right)\left(x+1\right)}{6k\left(x+2\right)}\text{, }&x\neq -2\text{ and }k\neq 0\\h\in \mathrm{R}\text{, }&\left(x=2\text{ or }x=-1\right)\text{ and }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{\left(x-2\right)\left(x+1\right)}{6h\left(x+2\right)}\text{, }&x\neq -2\text{ and }h\neq 0\\k\in \mathrm{R}\text{, }&\left(x=2\text{ or }x=-1\right)\text{ and }h=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-x-2=3k\left(4+2x\right)h
Use the distributive property to multiply x-2 by x+1 and combine like terms.
x^{2}-x-2=\left(12k+6kx\right)h
Use the distributive property to multiply 3k by 4+2x.
x^{2}-x-2=12kh+6kxh
Use the distributive property to multiply 12k+6kx by h.
12kh+6kxh=x^{2}-x-2
Swap sides so that all variable terms are on the left hand side.
\left(12k+6kx\right)h=x^{2}-x-2
Combine all terms containing h.
\left(6kx+12k\right)h=x^{2}-x-2
The equation is in standard form.
\frac{\left(6kx+12k\right)h}{6kx+12k}=\frac{\left(x-2\right)\left(x+1\right)}{6kx+12k}
Divide both sides by 12k+6kx.
h=\frac{\left(x-2\right)\left(x+1\right)}{6kx+12k}
Dividing by 12k+6kx undoes the multiplication by 12k+6kx.
h=\frac{\left(x-2\right)\left(x+1\right)}{6k\left(x+2\right)}
Divide \left(-2+x\right)\left(1+x\right) by 12k+6kx.
x^{2}-x-2=3k\left(4+2x\right)h
Use the distributive property to multiply x-2 by x+1 and combine like terms.
x^{2}-x-2=\left(12k+6kx\right)h
Use the distributive property to multiply 3k by 4+2x.
x^{2}-x-2=12kh+6kxh
Use the distributive property to multiply 12k+6kx by h.
12kh+6kxh=x^{2}-x-2
Swap sides so that all variable terms are on the left hand side.
\left(12h+6xh\right)k=x^{2}-x-2
Combine all terms containing k.
\left(6hx+12h\right)k=x^{2}-x-2
The equation is in standard form.
\frac{\left(6hx+12h\right)k}{6hx+12h}=\frac{\left(x-2\right)\left(x+1\right)}{6hx+12h}
Divide both sides by 6xh+12h.
k=\frac{\left(x-2\right)\left(x+1\right)}{6hx+12h}
Dividing by 6xh+12h undoes the multiplication by 6xh+12h.
k=\frac{\left(x-2\right)\left(x+1\right)}{6h\left(x+2\right)}
Divide \left(-2+x\right)\left(1+x\right) by 6xh+12h.
x^{2}-x-2=3k\left(4+2x\right)h
Use the distributive property to multiply x-2 by x+1 and combine like terms.
x^{2}-x-2=\left(12k+6kx\right)h
Use the distributive property to multiply 3k by 4+2x.
x^{2}-x-2=12kh+6kxh
Use the distributive property to multiply 12k+6kx by h.
12kh+6kxh=x^{2}-x-2
Swap sides so that all variable terms are on the left hand side.
\left(12k+6kx\right)h=x^{2}-x-2
Combine all terms containing h.
\left(6kx+12k\right)h=x^{2}-x-2
The equation is in standard form.
\frac{\left(6kx+12k\right)h}{6kx+12k}=\frac{\left(x-2\right)\left(x+1\right)}{6kx+12k}
Divide both sides by 12k+6kx.
h=\frac{\left(x-2\right)\left(x+1\right)}{6kx+12k}
Dividing by 12k+6kx undoes the multiplication by 12k+6kx.
h=\frac{\left(x-2\right)\left(x+1\right)}{6k\left(x+2\right)}
Divide \left(-2+x\right)\left(1+x\right) by 12k+6kx.
x^{2}-x-2=3k\left(4+2x\right)h
Use the distributive property to multiply x-2 by x+1 and combine like terms.
x^{2}-x-2=\left(12k+6kx\right)h
Use the distributive property to multiply 3k by 4+2x.
x^{2}-x-2=12kh+6kxh
Use the distributive property to multiply 12k+6kx by h.
12kh+6kxh=x^{2}-x-2
Swap sides so that all variable terms are on the left hand side.
\left(12h+6xh\right)k=x^{2}-x-2
Combine all terms containing k.
\left(6hx+12h\right)k=x^{2}-x-2
The equation is in standard form.
\frac{\left(6hx+12h\right)k}{6hx+12h}=\frac{\left(x-2\right)\left(x+1\right)}{6hx+12h}
Divide both sides by 6xh+12h.
k=\frac{\left(x-2\right)\left(x+1\right)}{6hx+12h}
Dividing by 6xh+12h undoes the multiplication by 6xh+12h.
k=\frac{\left(x-2\right)\left(x+1\right)}{6h\left(x+2\right)}
Divide \left(-2+x\right)\left(1+x\right) by 6xh+12h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}