Solve for x
x=21\sqrt{235}+2\approx 323.923904052
x=2-21\sqrt{235}\approx -319.923904052
Graph
Share
Copied to clipboard
\left(x-2\right)^{2}=103635
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
x^{2}-4x+4=103635
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-103635=0
Subtract 103635 from both sides.
x^{2}-4x-103631=0
Subtract 103635 from 4 to get -103631.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-103631\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -103631 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-103631\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+414524}}{2}
Multiply -4 times -103631.
x=\frac{-\left(-4\right)±\sqrt{414540}}{2}
Add 16 to 414524.
x=\frac{-\left(-4\right)±42\sqrt{235}}{2}
Take the square root of 414540.
x=\frac{4±42\sqrt{235}}{2}
The opposite of -4 is 4.
x=\frac{42\sqrt{235}+4}{2}
Now solve the equation x=\frac{4±42\sqrt{235}}{2} when ± is plus. Add 4 to 42\sqrt{235}.
x=21\sqrt{235}+2
Divide 4+42\sqrt{235} by 2.
x=\frac{4-42\sqrt{235}}{2}
Now solve the equation x=\frac{4±42\sqrt{235}}{2} when ± is minus. Subtract 42\sqrt{235} from 4.
x=2-21\sqrt{235}
Divide 4-42\sqrt{235} by 2.
x=21\sqrt{235}+2 x=2-21\sqrt{235}
The equation is now solved.
\left(x-2\right)^{2}=103635
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{103635}
Take the square root of both sides of the equation.
x-2=21\sqrt{235} x-2=-21\sqrt{235}
Simplify.
x=21\sqrt{235}+2 x=2-21\sqrt{235}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}