Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)^{2}=103635
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
x^{2}-4x+4=103635
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-103635=0
Subtract 103635 from both sides.
x^{2}-4x-103631=0
Subtract 103635 from 4 to get -103631.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-103631\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -103631 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-103631\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+414524}}{2}
Multiply -4 times -103631.
x=\frac{-\left(-4\right)±\sqrt{414540}}{2}
Add 16 to 414524.
x=\frac{-\left(-4\right)±42\sqrt{235}}{2}
Take the square root of 414540.
x=\frac{4±42\sqrt{235}}{2}
The opposite of -4 is 4.
x=\frac{42\sqrt{235}+4}{2}
Now solve the equation x=\frac{4±42\sqrt{235}}{2} when ± is plus. Add 4 to 42\sqrt{235}.
x=21\sqrt{235}+2
Divide 4+42\sqrt{235} by 2.
x=\frac{4-42\sqrt{235}}{2}
Now solve the equation x=\frac{4±42\sqrt{235}}{2} when ± is minus. Subtract 42\sqrt{235} from 4.
x=2-21\sqrt{235}
Divide 4-42\sqrt{235} by 2.
x=21\sqrt{235}+2 x=2-21\sqrt{235}
The equation is now solved.
\left(x-2\right)^{2}=103635
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{103635}
Take the square root of both sides of the equation.
x-2=21\sqrt{235} x-2=-21\sqrt{235}
Simplify.
x=21\sqrt{235}+2 x=2-21\sqrt{235}
Add 2 to both sides of the equation.