Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x+4-4x+2=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-8x+4+2=0
Combine -4x and -4x to get -8x.
x^{2}-8x+6=0
Add 4 and 2 to get 6.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 6}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-24}}{2}
Multiply -4 times 6.
x=\frac{-\left(-8\right)±\sqrt{40}}{2}
Add 64 to -24.
x=\frac{-\left(-8\right)±2\sqrt{10}}{2}
Take the square root of 40.
x=\frac{8±2\sqrt{10}}{2}
The opposite of -8 is 8.
x=\frac{2\sqrt{10}+8}{2}
Now solve the equation x=\frac{8±2\sqrt{10}}{2} when ± is plus. Add 8 to 2\sqrt{10}.
x=\sqrt{10}+4
Divide 8+2\sqrt{10} by 2.
x=\frac{8-2\sqrt{10}}{2}
Now solve the equation x=\frac{8±2\sqrt{10}}{2} when ± is minus. Subtract 2\sqrt{10} from 8.
x=4-\sqrt{10}
Divide 8-2\sqrt{10} by 2.
x=\sqrt{10}+4 x=4-\sqrt{10}
The equation is now solved.
x^{2}-4x+4-4x+2=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-8x+4+2=0
Combine -4x and -4x to get -8x.
x^{2}-8x+6=0
Add 4 and 2 to get 6.
x^{2}-8x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
x^{2}-8x+\left(-4\right)^{2}=-6+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-6+16
Square -4.
x^{2}-8x+16=10
Add -6 to 16.
\left(x-4\right)^{2}=10
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
x-4=\sqrt{10} x-4=-\sqrt{10}
Simplify.
x=\sqrt{10}+4 x=4-\sqrt{10}
Add 4 to both sides of the equation.