Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x+4-3\left(x-1\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-3x+3=0
Use the distributive property to multiply -3 by x-1.
x^{2}-7x+4+3=0
Combine -4x and -3x to get -7x.
x^{2}-7x+7=0
Add 4 and 3 to get 7.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 7}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 7}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-28}}{2}
Multiply -4 times 7.
x=\frac{-\left(-7\right)±\sqrt{21}}{2}
Add 49 to -28.
x=\frac{7±\sqrt{21}}{2}
The opposite of -7 is 7.
x=\frac{\sqrt{21}+7}{2}
Now solve the equation x=\frac{7±\sqrt{21}}{2} when ± is plus. Add 7 to \sqrt{21}.
x=\frac{7-\sqrt{21}}{2}
Now solve the equation x=\frac{7±\sqrt{21}}{2} when ± is minus. Subtract \sqrt{21} from 7.
x=\frac{\sqrt{21}+7}{2} x=\frac{7-\sqrt{21}}{2}
The equation is now solved.
x^{2}-4x+4-3\left(x-1\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-3x+3=0
Use the distributive property to multiply -3 by x-1.
x^{2}-7x+4+3=0
Combine -4x and -3x to get -7x.
x^{2}-7x+7=0
Add 4 and 3 to get 7.
x^{2}-7x=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-7+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-7+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{21}{4}
Add -7 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{21}}{2} x-\frac{7}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+7}{2} x=\frac{7-\sqrt{21}}{2}
Add \frac{7}{2} to both sides of the equation.