Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
x^{2}-4x+4-\left(x-3\right)\left(x+3\right)=2x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-\left(x^{2}-9\right)=2x+4
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
x^{2}-4x+4-x^{2}+9=2x+4
To find the opposite of x^{2}-9, find the opposite of each term.
-4x+4+9=2x+4
Combine x^{2} and -x^{2} to get 0.
-4x+13=2x+4
Add 4 and 9 to get 13.
-4x+13-2x=4
Subtract 2x from both sides.
-6x+13=4
Combine -4x and -2x to get -6x.
-6x=4-13
Subtract 13 from both sides.
-6x=-9
Subtract 13 from 4 to get -9.
x=\frac{-9}{-6}
Divide both sides by -6.
x=\frac{3}{2}
Reduce the fraction \frac{-9}{-6} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}