Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x+4=3\left(x^{2}-4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=3x^{2}-12
Use the distributive property to multiply 3 by x^{2}-4.
x^{2}-4x+4-3x^{2}=-12
Subtract 3x^{2} from both sides.
-2x^{2}-4x+4=-12
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-4x+4+12=0
Add 12 to both sides.
-2x^{2}-4x+16=0
Add 4 and 12 to get 16.
-x^{2}-2x+8=0
Divide both sides by 2.
a+b=-2 ab=-8=-8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
1,-8 2,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -8.
1-8=-7 2-4=-2
Calculate the sum for each pair.
a=2 b=-4
The solution is the pair that gives sum -2.
\left(-x^{2}+2x\right)+\left(-4x+8\right)
Rewrite -x^{2}-2x+8 as \left(-x^{2}+2x\right)+\left(-4x+8\right).
x\left(-x+2\right)+4\left(-x+2\right)
Factor out x in the first and 4 in the second group.
\left(-x+2\right)\left(x+4\right)
Factor out common term -x+2 by using distributive property.
x=2 x=-4
To find equation solutions, solve -x+2=0 and x+4=0.
x^{2}-4x+4=3\left(x^{2}-4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=3x^{2}-12
Use the distributive property to multiply 3 by x^{2}-4.
x^{2}-4x+4-3x^{2}=-12
Subtract 3x^{2} from both sides.
-2x^{2}-4x+4=-12
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-4x+4+12=0
Add 12 to both sides.
-2x^{2}-4x+16=0
Add 4 and 12 to get 16.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-2\right)\times 16}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -4 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-2\right)\times 16}}{2\left(-2\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+8\times 16}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-4\right)±\sqrt{16+128}}{2\left(-2\right)}
Multiply 8 times 16.
x=\frac{-\left(-4\right)±\sqrt{144}}{2\left(-2\right)}
Add 16 to 128.
x=\frac{-\left(-4\right)±12}{2\left(-2\right)}
Take the square root of 144.
x=\frac{4±12}{2\left(-2\right)}
The opposite of -4 is 4.
x=\frac{4±12}{-4}
Multiply 2 times -2.
x=\frac{16}{-4}
Now solve the equation x=\frac{4±12}{-4} when ± is plus. Add 4 to 12.
x=-4
Divide 16 by -4.
x=-\frac{8}{-4}
Now solve the equation x=\frac{4±12}{-4} when ± is minus. Subtract 12 from 4.
x=2
Divide -8 by -4.
x=-4 x=2
The equation is now solved.
x^{2}-4x+4=3\left(x^{2}-4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=3x^{2}-12
Use the distributive property to multiply 3 by x^{2}-4.
x^{2}-4x+4-3x^{2}=-12
Subtract 3x^{2} from both sides.
-2x^{2}-4x+4=-12
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-4x=-12-4
Subtract 4 from both sides.
-2x^{2}-4x=-16
Subtract 4 from -12 to get -16.
\frac{-2x^{2}-4x}{-2}=-\frac{16}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{4}{-2}\right)x=-\frac{16}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+2x=-\frac{16}{-2}
Divide -4 by -2.
x^{2}+2x=8
Divide -16 by -2.
x^{2}+2x+1^{2}=8+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=8+1
Square 1.
x^{2}+2x+1=9
Add 8 to 1.
\left(x+1\right)^{2}=9
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x+1=3 x+1=-3
Simplify.
x=2 x=-4
Subtract 1 from both sides of the equation.