Solve for k
k=\frac{\left(x-2\right)^{2}}{2}
Solve for x (complex solution)
x=-\sqrt{2k}+2
x=\sqrt{2k}+2
Solve for x
x=-\sqrt{2k}+2
x=\sqrt{2k}+2\text{, }k\geq 0
Graph
Share
Copied to clipboard
x^{2}-4x+4=2k
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2k=x^{2}-4x+4
Swap sides so that all variable terms are on the left hand side.
\frac{2k}{2}=\frac{\left(x-2\right)^{2}}{2}
Divide both sides by 2.
k=\frac{\left(x-2\right)^{2}}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}