Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x+4=1+x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-1=x
Subtract 1 from both sides.
x^{2}-4x+3=x
Subtract 1 from 4 to get 3.
x^{2}-4x+3-x=0
Subtract x from both sides.
x^{2}-5x+3=0
Combine -4x and -x to get -5x.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-5\right)±\sqrt{13}}{2}
Add 25 to -12.
x=\frac{5±\sqrt{13}}{2}
The opposite of -5 is 5.
x=\frac{\sqrt{13}+5}{2}
Now solve the equation x=\frac{5±\sqrt{13}}{2} when ± is plus. Add 5 to \sqrt{13}.
x=\frac{5-\sqrt{13}}{2}
Now solve the equation x=\frac{5±\sqrt{13}}{2} when ± is minus. Subtract \sqrt{13} from 5.
x=\frac{\sqrt{13}+5}{2} x=\frac{5-\sqrt{13}}{2}
The equation is now solved.
x^{2}-4x+4=1+x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-x=1
Subtract x from both sides.
x^{2}-5x+4=1
Combine -4x and -x to get -5x.
x^{2}-5x=1-4
Subtract 4 from both sides.
x^{2}-5x=-3
Subtract 4 from 1 to get -3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-3+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-3+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{13}{4}
Add -3 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{13}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{13}}{2} x-\frac{5}{2}=-\frac{\sqrt{13}}{2}
Simplify.
x=\frac{\sqrt{13}+5}{2} x=\frac{5-\sqrt{13}}{2}
Add \frac{5}{2} to both sides of the equation.