Solve for x
x=-\frac{1}{2}=-0.5
x=2
Graph
Share
Copied to clipboard
x^{2}-4x+4+\left(x+1\right)^{2}=x+7
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}+2x+1=x+7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}-4x+4+2x+1=x+7
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x+4+1=x+7
Combine -4x and 2x to get -2x.
2x^{2}-2x+5=x+7
Add 4 and 1 to get 5.
2x^{2}-2x+5-x=7
Subtract x from both sides.
2x^{2}-3x+5=7
Combine -2x and -x to get -3x.
2x^{2}-3x+5-7=0
Subtract 7 from both sides.
2x^{2}-3x-2=0
Subtract 7 from 5 to get -2.
a+b=-3 ab=2\left(-2\right)=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-4 2,-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4.
1-4=-3 2-2=0
Calculate the sum for each pair.
a=-4 b=1
The solution is the pair that gives sum -3.
\left(2x^{2}-4x\right)+\left(x-2\right)
Rewrite 2x^{2}-3x-2 as \left(2x^{2}-4x\right)+\left(x-2\right).
2x\left(x-2\right)+x-2
Factor out 2x in 2x^{2}-4x.
\left(x-2\right)\left(2x+1\right)
Factor out common term x-2 by using distributive property.
x=2 x=-\frac{1}{2}
To find equation solutions, solve x-2=0 and 2x+1=0.
x^{2}-4x+4+\left(x+1\right)^{2}=x+7
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}+2x+1=x+7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}-4x+4+2x+1=x+7
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x+4+1=x+7
Combine -4x and 2x to get -2x.
2x^{2}-2x+5=x+7
Add 4 and 1 to get 5.
2x^{2}-2x+5-x=7
Subtract x from both sides.
2x^{2}-3x+5=7
Combine -2x and -x to get -3x.
2x^{2}-3x+5-7=0
Subtract 7 from both sides.
2x^{2}-3x-2=0
Subtract 7 from 5 to get -2.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-2\right)}}{2\times 2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\times 2}
Add 9 to 16.
x=\frac{-\left(-3\right)±5}{2\times 2}
Take the square root of 25.
x=\frac{3±5}{2\times 2}
The opposite of -3 is 3.
x=\frac{3±5}{4}
Multiply 2 times 2.
x=\frac{8}{4}
Now solve the equation x=\frac{3±5}{4} when ± is plus. Add 3 to 5.
x=2
Divide 8 by 4.
x=-\frac{2}{4}
Now solve the equation x=\frac{3±5}{4} when ± is minus. Subtract 5 from 3.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x=2 x=-\frac{1}{2}
The equation is now solved.
x^{2}-4x+4+\left(x+1\right)^{2}=x+7
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}+2x+1=x+7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}-4x+4+2x+1=x+7
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x+4+1=x+7
Combine -4x and 2x to get -2x.
2x^{2}-2x+5=x+7
Add 4 and 1 to get 5.
2x^{2}-2x+5-x=7
Subtract x from both sides.
2x^{2}-3x+5=7
Combine -2x and -x to get -3x.
2x^{2}-3x=7-5
Subtract 5 from both sides.
2x^{2}-3x=2
Subtract 5 from 7 to get 2.
\frac{2x^{2}-3x}{2}=\frac{2}{2}
Divide both sides by 2.
x^{2}-\frac{3}{2}x=\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{3}{2}x=1
Divide 2 by 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=1+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
Add 1 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{5}{4} x-\frac{3}{4}=-\frac{5}{4}
Simplify.
x=2 x=-\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}