Solve for x
x=2\sqrt{41}-6\approx 6.806248475
x=-2\sqrt{41}-6\approx -18.806248475
Graph
Share
Copied to clipboard
x^{2}-24x+144+4=2\left(x-3\right)^{2}+2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-12\right)^{2}.
x^{2}-24x+148=2\left(x-3\right)^{2}+2
Add 144 and 4 to get 148.
x^{2}-24x+148=2\left(x^{2}-6x+9\right)+2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-24x+148=2x^{2}-12x+18+2
Use the distributive property to multiply 2 by x^{2}-6x+9.
x^{2}-24x+148=2x^{2}-12x+20
Add 18 and 2 to get 20.
x^{2}-24x+148-2x^{2}=-12x+20
Subtract 2x^{2} from both sides.
-x^{2}-24x+148=-12x+20
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-24x+148+12x=20
Add 12x to both sides.
-x^{2}-12x+148=20
Combine -24x and 12x to get -12x.
-x^{2}-12x+148-20=0
Subtract 20 from both sides.
-x^{2}-12x+128=0
Subtract 20 from 148 to get 128.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-1\right)\times 128}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -12 for b, and 128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-1\right)\times 128}}{2\left(-1\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+4\times 128}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-12\right)±\sqrt{144+512}}{2\left(-1\right)}
Multiply 4 times 128.
x=\frac{-\left(-12\right)±\sqrt{656}}{2\left(-1\right)}
Add 144 to 512.
x=\frac{-\left(-12\right)±4\sqrt{41}}{2\left(-1\right)}
Take the square root of 656.
x=\frac{12±4\sqrt{41}}{2\left(-1\right)}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{41}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{41}+12}{-2}
Now solve the equation x=\frac{12±4\sqrt{41}}{-2} when ± is plus. Add 12 to 4\sqrt{41}.
x=-2\sqrt{41}-6
Divide 12+4\sqrt{41} by -2.
x=\frac{12-4\sqrt{41}}{-2}
Now solve the equation x=\frac{12±4\sqrt{41}}{-2} when ± is minus. Subtract 4\sqrt{41} from 12.
x=2\sqrt{41}-6
Divide 12-4\sqrt{41} by -2.
x=-2\sqrt{41}-6 x=2\sqrt{41}-6
The equation is now solved.
x^{2}-24x+144+4=2\left(x-3\right)^{2}+2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-12\right)^{2}.
x^{2}-24x+148=2\left(x-3\right)^{2}+2
Add 144 and 4 to get 148.
x^{2}-24x+148=2\left(x^{2}-6x+9\right)+2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-24x+148=2x^{2}-12x+18+2
Use the distributive property to multiply 2 by x^{2}-6x+9.
x^{2}-24x+148=2x^{2}-12x+20
Add 18 and 2 to get 20.
x^{2}-24x+148-2x^{2}=-12x+20
Subtract 2x^{2} from both sides.
-x^{2}-24x+148=-12x+20
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-24x+148+12x=20
Add 12x to both sides.
-x^{2}-12x+148=20
Combine -24x and 12x to get -12x.
-x^{2}-12x=20-148
Subtract 148 from both sides.
-x^{2}-12x=-128
Subtract 148 from 20 to get -128.
\frac{-x^{2}-12x}{-1}=-\frac{128}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{12}{-1}\right)x=-\frac{128}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+12x=-\frac{128}{-1}
Divide -12 by -1.
x^{2}+12x=128
Divide -128 by -1.
x^{2}+12x+6^{2}=128+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=128+36
Square 6.
x^{2}+12x+36=164
Add 128 to 36.
\left(x+6\right)^{2}=164
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{164}
Take the square root of both sides of the equation.
x+6=2\sqrt{41} x+6=-2\sqrt{41}
Simplify.
x=2\sqrt{41}-6 x=-2\sqrt{41}-6
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}