( x - 100 ) [ 300 + ( 200 - x ) ) = 3200
Solve for x
x=40\sqrt{23}+300\approx 491.833260933
x=300-40\sqrt{23}\approx 108.166739067
Graph
Share
Copied to clipboard
\left(x-100\right)\left(500-x\right)=3200
Add 300 and 200 to get 500.
600x-x^{2}-50000=3200
Use the distributive property to multiply x-100 by 500-x and combine like terms.
600x-x^{2}-50000-3200=0
Subtract 3200 from both sides.
600x-x^{2}-53200=0
Subtract 3200 from -50000 to get -53200.
-x^{2}+600x-53200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-600±\sqrt{600^{2}-4\left(-1\right)\left(-53200\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 600 for b, and -53200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-600±\sqrt{360000-4\left(-1\right)\left(-53200\right)}}{2\left(-1\right)}
Square 600.
x=\frac{-600±\sqrt{360000+4\left(-53200\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-600±\sqrt{360000-212800}}{2\left(-1\right)}
Multiply 4 times -53200.
x=\frac{-600±\sqrt{147200}}{2\left(-1\right)}
Add 360000 to -212800.
x=\frac{-600±80\sqrt{23}}{2\left(-1\right)}
Take the square root of 147200.
x=\frac{-600±80\sqrt{23}}{-2}
Multiply 2 times -1.
x=\frac{80\sqrt{23}-600}{-2}
Now solve the equation x=\frac{-600±80\sqrt{23}}{-2} when ± is plus. Add -600 to 80\sqrt{23}.
x=300-40\sqrt{23}
Divide -600+80\sqrt{23} by -2.
x=\frac{-80\sqrt{23}-600}{-2}
Now solve the equation x=\frac{-600±80\sqrt{23}}{-2} when ± is minus. Subtract 80\sqrt{23} from -600.
x=40\sqrt{23}+300
Divide -600-80\sqrt{23} by -2.
x=300-40\sqrt{23} x=40\sqrt{23}+300
The equation is now solved.
\left(x-100\right)\left(500-x\right)=3200
Add 300 and 200 to get 500.
600x-x^{2}-50000=3200
Use the distributive property to multiply x-100 by 500-x and combine like terms.
600x-x^{2}=3200+50000
Add 50000 to both sides.
600x-x^{2}=53200
Add 3200 and 50000 to get 53200.
-x^{2}+600x=53200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+600x}{-1}=\frac{53200}{-1}
Divide both sides by -1.
x^{2}+\frac{600}{-1}x=\frac{53200}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-600x=\frac{53200}{-1}
Divide 600 by -1.
x^{2}-600x=-53200
Divide 53200 by -1.
x^{2}-600x+\left(-300\right)^{2}=-53200+\left(-300\right)^{2}
Divide -600, the coefficient of the x term, by 2 to get -300. Then add the square of -300 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-600x+90000=-53200+90000
Square -300.
x^{2}-600x+90000=36800
Add -53200 to 90000.
\left(x-300\right)^{2}=36800
Factor x^{2}-600x+90000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-300\right)^{2}}=\sqrt{36800}
Take the square root of both sides of the equation.
x-300=40\sqrt{23} x-300=-40\sqrt{23}
Simplify.
x=40\sqrt{23}+300 x=300-40\sqrt{23}
Add 300 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}