Skip to main content
Solve for m (complex solution)
Tick mark Image
Solve for n (complex solution)
Tick mark Image
Solve for m
Tick mark Image
Solve for n
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-mx^{2}+xn-x^{2}+xm-n=x^{3}-6x^{2}+11x-6
Use the distributive property to multiply x-1 by x^{2}-mx+n.
-mx^{2}+xn-x^{2}+xm-n=x^{3}-6x^{2}+11x-6-x^{3}
Subtract x^{3} from both sides.
-mx^{2}+xn-x^{2}+xm-n=-6x^{2}+11x-6
Combine x^{3} and -x^{3} to get 0.
-mx^{2}-x^{2}+xm-n=-6x^{2}+11x-6-xn
Subtract xn from both sides.
-mx^{2}+xm-n=-6x^{2}+11x-6-xn+x^{2}
Add x^{2} to both sides.
-mx^{2}+xm-n=-5x^{2}+11x-6-xn
Combine -6x^{2} and x^{2} to get -5x^{2}.
-mx^{2}+xm=-5x^{2}+11x-6-xn+n
Add n to both sides.
\left(-x^{2}+x\right)m=-5x^{2}+11x-6-xn+n
Combine all terms containing m.
\left(x-x^{2}\right)m=-5x^{2}-nx+11x+n-6
The equation is in standard form.
\frac{\left(x-x^{2}\right)m}{x-x^{2}}=\frac{\left(1-x\right)\left(5x+n-6\right)}{x-x^{2}}
Divide both sides by -x^{2}+x.
m=\frac{\left(1-x\right)\left(5x+n-6\right)}{x-x^{2}}
Dividing by -x^{2}+x undoes the multiplication by -x^{2}+x.
m=\frac{5x+n-6}{x}
Divide \left(-6+5x+n\right)\left(1-x\right) by -x^{2}+x.
x^{3}-mx^{2}+xn-x^{2}+mx-n=x^{3}-6x^{2}+11x-6
Use the distributive property to multiply x-1 by x^{2}-mx+n.
-mx^{2}+xn-x^{2}+mx-n=x^{3}-6x^{2}+11x-6-x^{3}
Subtract x^{3} from both sides.
-mx^{2}+xn-x^{2}+mx-n=-6x^{2}+11x-6
Combine x^{3} and -x^{3} to get 0.
xn-x^{2}+mx-n=-6x^{2}+11x-6+mx^{2}
Add mx^{2} to both sides.
xn+mx-n=-6x^{2}+11x-6+mx^{2}+x^{2}
Add x^{2} to both sides.
xn+mx-n=-5x^{2}+11x-6+mx^{2}
Combine -6x^{2} and x^{2} to get -5x^{2}.
xn-n=-5x^{2}+11x-6+mx^{2}-mx
Subtract mx from both sides.
\left(x-1\right)n=-5x^{2}+11x-6+mx^{2}-mx
Combine all terms containing n.
\left(x-1\right)n=mx^{2}-5x^{2}-mx+11x-6
The equation is in standard form.
\frac{\left(x-1\right)n}{x-1}=\frac{\left(x-1\right)\left(mx-5x+6\right)}{x-1}
Divide both sides by x-1.
n=\frac{\left(x-1\right)\left(mx-5x+6\right)}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
n=mx-5x+6
Divide \left(-1+x\right)\left(6-5x+xm\right) by x-1.
x^{3}-mx^{2}+xn-x^{2}+xm-n=x^{3}-6x^{2}+11x-6
Use the distributive property to multiply x-1 by x^{2}-mx+n.
-mx^{2}+xn-x^{2}+xm-n=x^{3}-6x^{2}+11x-6-x^{3}
Subtract x^{3} from both sides.
-mx^{2}+xn-x^{2}+xm-n=-6x^{2}+11x-6
Combine x^{3} and -x^{3} to get 0.
-mx^{2}-x^{2}+xm-n=-6x^{2}+11x-6-xn
Subtract xn from both sides.
-mx^{2}+xm-n=-6x^{2}+11x-6-xn+x^{2}
Add x^{2} to both sides.
-mx^{2}+xm-n=-5x^{2}+11x-6-xn
Combine -6x^{2} and x^{2} to get -5x^{2}.
-mx^{2}+xm=-5x^{2}+11x-6-xn+n
Add n to both sides.
\left(-x^{2}+x\right)m=-5x^{2}+11x-6-xn+n
Combine all terms containing m.
\left(x-x^{2}\right)m=-5x^{2}-nx+11x+n-6
The equation is in standard form.
\frac{\left(x-x^{2}\right)m}{x-x^{2}}=\frac{\left(1-x\right)\left(5x+n-6\right)}{x-x^{2}}
Divide both sides by -x^{2}+x.
m=\frac{\left(1-x\right)\left(5x+n-6\right)}{x-x^{2}}
Dividing by -x^{2}+x undoes the multiplication by -x^{2}+x.
m=\frac{5x+n-6}{x}
Divide \left(-6+5x+n\right)\left(1-x\right) by -x^{2}+x.
x^{3}-mx^{2}+xn-x^{2}+mx-n=x^{3}-6x^{2}+11x-6
Use the distributive property to multiply x-1 by x^{2}-mx+n.
-mx^{2}+xn-x^{2}+mx-n=x^{3}-6x^{2}+11x-6-x^{3}
Subtract x^{3} from both sides.
-mx^{2}+xn-x^{2}+mx-n=-6x^{2}+11x-6
Combine x^{3} and -x^{3} to get 0.
xn-x^{2}+mx-n=-6x^{2}+11x-6+mx^{2}
Add mx^{2} to both sides.
xn+mx-n=-6x^{2}+11x-6+mx^{2}+x^{2}
Add x^{2} to both sides.
xn+mx-n=-5x^{2}+11x-6+mx^{2}
Combine -6x^{2} and x^{2} to get -5x^{2}.
xn-n=-5x^{2}+11x-6+mx^{2}-mx
Subtract mx from both sides.
\left(x-1\right)n=-5x^{2}+11x-6+mx^{2}-mx
Combine all terms containing n.
\left(x-1\right)n=mx^{2}-5x^{2}-mx+11x-6
The equation is in standard form.
\frac{\left(x-1\right)n}{x-1}=\frac{\left(x-1\right)\left(mx-5x+6\right)}{x-1}
Divide both sides by x-1.
n=\frac{\left(x-1\right)\left(mx-5x+6\right)}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
n=mx-5x+6
Divide \left(-1+x\right)\left(6-5x+xm\right) by x-1.