Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{5x+n-6}{x}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&x=1\text{ or }\left(x=0\text{ and }n=6\right)\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}\\n=mx-5x+6\text{, }&\text{unconditionally}\\n\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{5x+n-6}{x}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&x=1\text{ or }\left(x=0\text{ and }n=6\right)\end{matrix}\right.
Solve for n
\left\{\begin{matrix}\\n=mx-5x+6\text{, }&\text{unconditionally}\\n\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{3}-mx^{2}+xn-x^{2}+xm-n=x^{3}-6x^{2}+11x-6
Use the distributive property to multiply x-1 by x^{2}-mx+n.
-mx^{2}+xn-x^{2}+xm-n=x^{3}-6x^{2}+11x-6-x^{3}
Subtract x^{3} from both sides.
-mx^{2}+xn-x^{2}+xm-n=-6x^{2}+11x-6
Combine x^{3} and -x^{3} to get 0.
-mx^{2}-x^{2}+xm-n=-6x^{2}+11x-6-xn
Subtract xn from both sides.
-mx^{2}+xm-n=-6x^{2}+11x-6-xn+x^{2}
Add x^{2} to both sides.
-mx^{2}+xm-n=-5x^{2}+11x-6-xn
Combine -6x^{2} and x^{2} to get -5x^{2}.
-mx^{2}+xm=-5x^{2}+11x-6-xn+n
Add n to both sides.
\left(-x^{2}+x\right)m=-5x^{2}+11x-6-xn+n
Combine all terms containing m.
\left(x-x^{2}\right)m=-5x^{2}-nx+11x+n-6
The equation is in standard form.
\frac{\left(x-x^{2}\right)m}{x-x^{2}}=\frac{\left(1-x\right)\left(5x+n-6\right)}{x-x^{2}}
Divide both sides by -x^{2}+x.
m=\frac{\left(1-x\right)\left(5x+n-6\right)}{x-x^{2}}
Dividing by -x^{2}+x undoes the multiplication by -x^{2}+x.
m=\frac{5x+n-6}{x}
Divide \left(-6+5x+n\right)\left(1-x\right) by -x^{2}+x.
x^{3}-mx^{2}+xn-x^{2}+mx-n=x^{3}-6x^{2}+11x-6
Use the distributive property to multiply x-1 by x^{2}-mx+n.
-mx^{2}+xn-x^{2}+mx-n=x^{3}-6x^{2}+11x-6-x^{3}
Subtract x^{3} from both sides.
-mx^{2}+xn-x^{2}+mx-n=-6x^{2}+11x-6
Combine x^{3} and -x^{3} to get 0.
xn-x^{2}+mx-n=-6x^{2}+11x-6+mx^{2}
Add mx^{2} to both sides.
xn+mx-n=-6x^{2}+11x-6+mx^{2}+x^{2}
Add x^{2} to both sides.
xn+mx-n=-5x^{2}+11x-6+mx^{2}
Combine -6x^{2} and x^{2} to get -5x^{2}.
xn-n=-5x^{2}+11x-6+mx^{2}-mx
Subtract mx from both sides.
\left(x-1\right)n=-5x^{2}+11x-6+mx^{2}-mx
Combine all terms containing n.
\left(x-1\right)n=mx^{2}-5x^{2}-mx+11x-6
The equation is in standard form.
\frac{\left(x-1\right)n}{x-1}=\frac{\left(x-1\right)\left(mx-5x+6\right)}{x-1}
Divide both sides by x-1.
n=\frac{\left(x-1\right)\left(mx-5x+6\right)}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
n=mx-5x+6
Divide \left(-1+x\right)\left(6-5x+xm\right) by x-1.
x^{3}-mx^{2}+xn-x^{2}+xm-n=x^{3}-6x^{2}+11x-6
Use the distributive property to multiply x-1 by x^{2}-mx+n.
-mx^{2}+xn-x^{2}+xm-n=x^{3}-6x^{2}+11x-6-x^{3}
Subtract x^{3} from both sides.
-mx^{2}+xn-x^{2}+xm-n=-6x^{2}+11x-6
Combine x^{3} and -x^{3} to get 0.
-mx^{2}-x^{2}+xm-n=-6x^{2}+11x-6-xn
Subtract xn from both sides.
-mx^{2}+xm-n=-6x^{2}+11x-6-xn+x^{2}
Add x^{2} to both sides.
-mx^{2}+xm-n=-5x^{2}+11x-6-xn
Combine -6x^{2} and x^{2} to get -5x^{2}.
-mx^{2}+xm=-5x^{2}+11x-6-xn+n
Add n to both sides.
\left(-x^{2}+x\right)m=-5x^{2}+11x-6-xn+n
Combine all terms containing m.
\left(x-x^{2}\right)m=-5x^{2}-nx+11x+n-6
The equation is in standard form.
\frac{\left(x-x^{2}\right)m}{x-x^{2}}=\frac{\left(1-x\right)\left(5x+n-6\right)}{x-x^{2}}
Divide both sides by -x^{2}+x.
m=\frac{\left(1-x\right)\left(5x+n-6\right)}{x-x^{2}}
Dividing by -x^{2}+x undoes the multiplication by -x^{2}+x.
m=\frac{5x+n-6}{x}
Divide \left(-6+5x+n\right)\left(1-x\right) by -x^{2}+x.
x^{3}-mx^{2}+xn-x^{2}+mx-n=x^{3}-6x^{2}+11x-6
Use the distributive property to multiply x-1 by x^{2}-mx+n.
-mx^{2}+xn-x^{2}+mx-n=x^{3}-6x^{2}+11x-6-x^{3}
Subtract x^{3} from both sides.
-mx^{2}+xn-x^{2}+mx-n=-6x^{2}+11x-6
Combine x^{3} and -x^{3} to get 0.
xn-x^{2}+mx-n=-6x^{2}+11x-6+mx^{2}
Add mx^{2} to both sides.
xn+mx-n=-6x^{2}+11x-6+mx^{2}+x^{2}
Add x^{2} to both sides.
xn+mx-n=-5x^{2}+11x-6+mx^{2}
Combine -6x^{2} and x^{2} to get -5x^{2}.
xn-n=-5x^{2}+11x-6+mx^{2}-mx
Subtract mx from both sides.
\left(x-1\right)n=-5x^{2}+11x-6+mx^{2}-mx
Combine all terms containing n.
\left(x-1\right)n=mx^{2}-5x^{2}-mx+11x-6
The equation is in standard form.
\frac{\left(x-1\right)n}{x-1}=\frac{\left(x-1\right)\left(mx-5x+6\right)}{x-1}
Divide both sides by x-1.
n=\frac{\left(x-1\right)\left(mx-5x+6\right)}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
n=mx-5x+6
Divide \left(-1+x\right)\left(6-5x+xm\right) by x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}