Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
x^{2}+5x-6-\left(x-2\right)\left(x-3\right)=3
Use the distributive property to multiply x-1 by x+6 and combine like terms.
x^{2}+5x-6-\left(x^{2}-5x+6\right)=3
Use the distributive property to multiply x-2 by x-3 and combine like terms.
x^{2}+5x-6-x^{2}+5x-6=3
To find the opposite of x^{2}-5x+6, find the opposite of each term.
5x-6+5x-6=3
Combine x^{2} and -x^{2} to get 0.
10x-6-6=3
Combine 5x and 5x to get 10x.
10x-12=3
Subtract 6 from -6 to get -12.
10x=3+12
Add 12 to both sides.
10x=15
Add 3 and 12 to get 15.
x=\frac{15}{10}
Divide both sides by 10.
x=\frac{3}{2}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}