Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x-3+5=0
Use the distributive property to multiply x-1 by x+3 and combine like terms.
x^{2}+2x+2=0
Add -3 and 5 to get 2.
x=\frac{-2±\sqrt{2^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2}}{2}
Square 2.
x=\frac{-2±\sqrt{4-8}}{2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{-4}}{2}
Add 4 to -8.
x=\frac{-2±2i}{2}
Take the square root of -4.
x=\frac{-2+2i}{2}
Now solve the equation x=\frac{-2±2i}{2} when ± is plus. Add -2 to 2i.
x=-1+i
Divide -2+2i by 2.
x=\frac{-2-2i}{2}
Now solve the equation x=\frac{-2±2i}{2} when ± is minus. Subtract 2i from -2.
x=-1-i
Divide -2-2i by 2.
x=-1+i x=-1-i
The equation is now solved.
x^{2}+2x-3+5=0
Use the distributive property to multiply x-1 by x+3 and combine like terms.
x^{2}+2x+2=0
Add -3 and 5 to get 2.
x^{2}+2x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x^{2}+2x+1^{2}=-2+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-2+1
Square 1.
x^{2}+2x+1=-1
Add -2 to 1.
\left(x+1\right)^{2}=-1
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x+1=i x+1=-i
Simplify.
x=-1+i x=-1-i
Subtract 1 from both sides of the equation.