Solve for x
x=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
x^{2}+x-2-x\left(x+3\right)=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Use the distributive property to multiply x-1 by x+2 and combine like terms.
x^{2}+x-2-\left(x^{2}+3x\right)=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Use the distributive property to multiply x by x+3.
x^{2}+x-2-x^{2}-3x=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
To find the opposite of x^{2}+3x, find the opposite of each term.
x-2-3x=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Combine x^{2} and -x^{2} to get 0.
-2x-2=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Combine x and -3x to get -2x.
-2x-2=x^{2}-4-\left(x-1\right)^{2}
Consider \left(x-2\right)\left(x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
-2x-2=x^{2}-4-\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-2x-2=x^{2}-4-x^{2}+2x-1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
-2x-2=-4+2x-1
Combine x^{2} and -x^{2} to get 0.
-2x-2=-5+2x
Subtract 1 from -4 to get -5.
-2x-2-2x=-5
Subtract 2x from both sides.
-4x-2=-5
Combine -2x and -2x to get -4x.
-4x=-5+2
Add 2 to both sides.
-4x=-3
Add -5 and 2 to get -3.
x=\frac{-3}{-4}
Divide both sides by -4.
x=\frac{3}{4}
Fraction \frac{-3}{-4} can be simplified to \frac{3}{4} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}