Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)-\left(x+3\right)\left(x-2\right)-19
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x+3\right)\left(x-2\right)-19
Use the distributive property to multiply x^{2} by x-1.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x^{2}+x-6\right)-19
Use the distributive property to multiply x+3 by x-2 and combine like terms.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-x^{2}-x+6-19
To find the opposite of x^{2}+x-6, find the opposite of each term.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x+6-19
Combine -x^{2} and -x^{2} to get -2x^{2}.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x-13
Subtract 19 from 6 to get -13.
x^{3}-3x^{2}+3x-1-x^{3}=-2x^{2}-x-13
Subtract x^{3} from both sides.
-3x^{2}+3x-1=-2x^{2}-x-13
Combine x^{3} and -x^{3} to get 0.
-3x^{2}+3x-1+2x^{2}=-x-13
Add 2x^{2} to both sides.
-x^{2}+3x-1=-x-13
Combine -3x^{2} and 2x^{2} to get -x^{2}.
-x^{2}+3x-1+x=-13
Add x to both sides.
-x^{2}+4x-1=-13
Combine 3x and x to get 4x.
-x^{2}+4x-1+13=0
Add 13 to both sides.
-x^{2}+4x+12=0
Add -1 and 13 to get 12.
a+b=4 ab=-12=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=6 b=-2
The solution is the pair that gives sum 4.
\left(-x^{2}+6x\right)+\left(-2x+12\right)
Rewrite -x^{2}+4x+12 as \left(-x^{2}+6x\right)+\left(-2x+12\right).
-x\left(x-6\right)-2\left(x-6\right)
Factor out -x in the first and -2 in the second group.
\left(x-6\right)\left(-x-2\right)
Factor out common term x-6 by using distributive property.
x=6 x=-2
To find equation solutions, solve x-6=0 and -x-2=0.
x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)-\left(x+3\right)\left(x-2\right)-19
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x+3\right)\left(x-2\right)-19
Use the distributive property to multiply x^{2} by x-1.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x^{2}+x-6\right)-19
Use the distributive property to multiply x+3 by x-2 and combine like terms.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-x^{2}-x+6-19
To find the opposite of x^{2}+x-6, find the opposite of each term.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x+6-19
Combine -x^{2} and -x^{2} to get -2x^{2}.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x-13
Subtract 19 from 6 to get -13.
x^{3}-3x^{2}+3x-1-x^{3}=-2x^{2}-x-13
Subtract x^{3} from both sides.
-3x^{2}+3x-1=-2x^{2}-x-13
Combine x^{3} and -x^{3} to get 0.
-3x^{2}+3x-1+2x^{2}=-x-13
Add 2x^{2} to both sides.
-x^{2}+3x-1=-x-13
Combine -3x^{2} and 2x^{2} to get -x^{2}.
-x^{2}+3x-1+x=-13
Add x to both sides.
-x^{2}+4x-1=-13
Combine 3x and x to get 4x.
-x^{2}+4x-1+13=0
Add 13 to both sides.
-x^{2}+4x+12=0
Add -1 and 13 to get 12.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 12}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\times 12}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16+48}}{2\left(-1\right)}
Multiply 4 times 12.
x=\frac{-4±\sqrt{64}}{2\left(-1\right)}
Add 16 to 48.
x=\frac{-4±8}{2\left(-1\right)}
Take the square root of 64.
x=\frac{-4±8}{-2}
Multiply 2 times -1.
x=\frac{4}{-2}
Now solve the equation x=\frac{-4±8}{-2} when ± is plus. Add -4 to 8.
x=-2
Divide 4 by -2.
x=-\frac{12}{-2}
Now solve the equation x=\frac{-4±8}{-2} when ± is minus. Subtract 8 from -4.
x=6
Divide -12 by -2.
x=-2 x=6
The equation is now solved.
x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)-\left(x+3\right)\left(x-2\right)-19
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x+3\right)\left(x-2\right)-19
Use the distributive property to multiply x^{2} by x-1.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-\left(x^{2}+x-6\right)-19
Use the distributive property to multiply x+3 by x-2 and combine like terms.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}-x^{2}-x+6-19
To find the opposite of x^{2}+x-6, find the opposite of each term.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x+6-19
Combine -x^{2} and -x^{2} to get -2x^{2}.
x^{3}-3x^{2}+3x-1=x^{3}-2x^{2}-x-13
Subtract 19 from 6 to get -13.
x^{3}-3x^{2}+3x-1-x^{3}=-2x^{2}-x-13
Subtract x^{3} from both sides.
-3x^{2}+3x-1=-2x^{2}-x-13
Combine x^{3} and -x^{3} to get 0.
-3x^{2}+3x-1+2x^{2}=-x-13
Add 2x^{2} to both sides.
-x^{2}+3x-1=-x-13
Combine -3x^{2} and 2x^{2} to get -x^{2}.
-x^{2}+3x-1+x=-13
Add x to both sides.
-x^{2}+4x-1=-13
Combine 3x and x to get 4x.
-x^{2}+4x=-13+1
Add 1 to both sides.
-x^{2}+4x=-12
Add -13 and 1 to get -12.
\frac{-x^{2}+4x}{-1}=-\frac{12}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=-\frac{12}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=-\frac{12}{-1}
Divide 4 by -1.
x^{2}-4x=12
Divide -12 by -1.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=12+4
Square -2.
x^{2}-4x+4=16
Add 12 to 4.
\left(x-2\right)^{2}=16
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-2=4 x-2=-4
Simplify.
x=6 x=-2
Add 2 to both sides of the equation.