Solve for p
\left\{\begin{matrix}p=-\frac{-x^{3}+x^{2}+x-2}{tx\left(x-1\right)}\text{, }&t\neq 0\text{ and }x\neq 1\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&\left(x=-\sqrt[3]{\frac{\sqrt{177}}{18}+\frac{43}{54}}-\sqrt[3]{-\frac{\sqrt{177}}{18}+\frac{43}{54}}+\frac{1}{3}\text{ and }t=0\right)\text{ or }x=1\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=-\frac{-x^{3}+x^{2}+x-2}{px\left(x-1\right)}\text{, }&p\neq 0\text{ and }x\neq 1\text{ and }x\neq 0\\t\in \mathrm{R}\text{, }&\left(x=-\sqrt[3]{\frac{\sqrt{177}}{18}+\frac{43}{54}}-\sqrt[3]{-\frac{\sqrt{177}}{18}+\frac{43}{54}}+\frac{1}{3}\text{ and }p=0\right)\text{ or }x=1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x^{2}-2x+1\right)tpx=x^{4}-2x^{3}+3x-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\left(x^{2}t-2xt+t\right)px=x^{4}-2x^{3}+3x-2
Use the distributive property to multiply x^{2}-2x+1 by t.
\left(x^{2}tp-2xtp+tp\right)x=x^{4}-2x^{3}+3x-2
Use the distributive property to multiply x^{2}t-2xt+t by p.
tpx^{3}-2tpx^{2}+tpx=x^{4}-2x^{3}+3x-2
Use the distributive property to multiply x^{2}tp-2xtp+tp by x.
\left(tx^{3}-2tx^{2}+tx\right)p=x^{4}-2x^{3}+3x-2
Combine all terms containing p.
\frac{\left(tx^{3}-2tx^{2}+tx\right)p}{tx^{3}-2tx^{2}+tx}=\frac{x^{4}-2x^{3}+3x-2}{tx^{3}-2tx^{2}+tx}
Divide both sides by tx^{3}-2tx^{2}+tx.
p=\frac{x^{4}-2x^{3}+3x-2}{tx^{3}-2tx^{2}+tx}
Dividing by tx^{3}-2tx^{2}+tx undoes the multiplication by tx^{3}-2tx^{2}+tx.
p=\frac{x^{3}-x^{2}-x+2}{tx\left(x-1\right)}
Divide x^{4}-2x^{3}+3x-2 by tx^{3}-2tx^{2}+tx.
\left(x^{2}-2x+1\right)tpx=x^{4}-2x^{3}+3x-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\left(x^{2}t-2xt+t\right)px=x^{4}-2x^{3}+3x-2
Use the distributive property to multiply x^{2}-2x+1 by t.
\left(x^{2}tp-2xtp+tp\right)x=x^{4}-2x^{3}+3x-2
Use the distributive property to multiply x^{2}t-2xt+t by p.
tpx^{3}-2tpx^{2}+tpx=x^{4}-2x^{3}+3x-2
Use the distributive property to multiply x^{2}tp-2xtp+tp by x.
\left(px^{3}-2px^{2}+px\right)t=x^{4}-2x^{3}+3x-2
Combine all terms containing t.
\frac{\left(px^{3}-2px^{2}+px\right)t}{px^{3}-2px^{2}+px}=\frac{x^{4}-2x^{3}+3x-2}{px^{3}-2px^{2}+px}
Divide both sides by px^{3}-2px^{2}+px.
t=\frac{x^{4}-2x^{3}+3x-2}{px^{3}-2px^{2}+px}
Dividing by px^{3}-2px^{2}+px undoes the multiplication by px^{3}-2px^{2}+px.
t=\frac{x^{3}-x^{2}-x+2}{px\left(x-1\right)}
Divide x^{4}-2x^{3}+3x-2 by px^{3}-2px^{2}+px.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}