Solve for x (complex solution)
x=\frac{\sqrt{2}i}{4}+\frac{1}{2}\approx 0.5+0.353553391i
x=-\frac{\sqrt{2}i}{4}+\frac{1}{2}\approx 0.5-0.353553391i
Graph
Share
Copied to clipboard
x^{2}-2x+1+x^{2}=\frac{1}{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-2x+1=\frac{1}{4}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x+1-\frac{1}{4}=0
Subtract \frac{1}{4} from both sides.
2x^{2}-2x+\frac{3}{4}=0
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times \frac{3}{4}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2 for b, and \frac{3}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\times \frac{3}{4}}}{2\times 2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\times \frac{3}{4}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2\right)±\sqrt{4-6}}{2\times 2}
Multiply -8 times \frac{3}{4}.
x=\frac{-\left(-2\right)±\sqrt{-2}}{2\times 2}
Add 4 to -6.
x=\frac{-\left(-2\right)±\sqrt{2}i}{2\times 2}
Take the square root of -2.
x=\frac{2±\sqrt{2}i}{2\times 2}
The opposite of -2 is 2.
x=\frac{2±\sqrt{2}i}{4}
Multiply 2 times 2.
x=\frac{2+\sqrt{2}i}{4}
Now solve the equation x=\frac{2±\sqrt{2}i}{4} when ± is plus. Add 2 to i\sqrt{2}.
x=\frac{\sqrt{2}i}{4}+\frac{1}{2}
Divide 2+i\sqrt{2} by 4.
x=\frac{-\sqrt{2}i+2}{4}
Now solve the equation x=\frac{2±\sqrt{2}i}{4} when ± is minus. Subtract i\sqrt{2} from 2.
x=-\frac{\sqrt{2}i}{4}+\frac{1}{2}
Divide 2-i\sqrt{2} by 4.
x=\frac{\sqrt{2}i}{4}+\frac{1}{2} x=-\frac{\sqrt{2}i}{4}+\frac{1}{2}
The equation is now solved.
x^{2}-2x+1+x^{2}=\frac{1}{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-2x+1=\frac{1}{4}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x=\frac{1}{4}-1
Subtract 1 from both sides.
2x^{2}-2x=-\frac{3}{4}
Subtract 1 from \frac{1}{4} to get -\frac{3}{4}.
\frac{2x^{2}-2x}{2}=-\frac{\frac{3}{4}}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2}{2}\right)x=-\frac{\frac{3}{4}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-x=-\frac{\frac{3}{4}}{2}
Divide -2 by 2.
x^{2}-x=-\frac{3}{8}
Divide -\frac{3}{4} by 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{3}{8}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{3}{8}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{1}{8}
Add -\frac{3}{8} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{1}{8}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{1}{8}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{2}i}{4} x-\frac{1}{2}=-\frac{\sqrt{2}i}{4}
Simplify.
x=\frac{\sqrt{2}i}{4}+\frac{1}{2} x=-\frac{\sqrt{2}i}{4}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}