Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+1+\left(x-3\right)^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}-6x+9=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-2x+1-6x+9=25
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+1+9=25
Combine -2x and -6x to get -8x.
2x^{2}-8x+10=25
Add 1 and 9 to get 10.
2x^{2}-8x+10-25=0
Subtract 25 from both sides.
2x^{2}-8x-15=0
Subtract 25 from 10 to get -15.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-15\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-15\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-15\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+120}}{2\times 2}
Multiply -8 times -15.
x=\frac{-\left(-8\right)±\sqrt{184}}{2\times 2}
Add 64 to 120.
x=\frac{-\left(-8\right)±2\sqrt{46}}{2\times 2}
Take the square root of 184.
x=\frac{8±2\sqrt{46}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{46}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{46}+8}{4}
Now solve the equation x=\frac{8±2\sqrt{46}}{4} when ± is plus. Add 8 to 2\sqrt{46}.
x=\frac{\sqrt{46}}{2}+2
Divide 8+2\sqrt{46} by 4.
x=\frac{8-2\sqrt{46}}{4}
Now solve the equation x=\frac{8±2\sqrt{46}}{4} when ± is minus. Subtract 2\sqrt{46} from 8.
x=-\frac{\sqrt{46}}{2}+2
Divide 8-2\sqrt{46} by 4.
x=\frac{\sqrt{46}}{2}+2 x=-\frac{\sqrt{46}}{2}+2
The equation is now solved.
x^{2}-2x+1+\left(x-3\right)^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}-6x+9=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-2x+1-6x+9=25
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+1+9=25
Combine -2x and -6x to get -8x.
2x^{2}-8x+10=25
Add 1 and 9 to get 10.
2x^{2}-8x=25-10
Subtract 10 from both sides.
2x^{2}-8x=15
Subtract 10 from 25 to get 15.
\frac{2x^{2}-8x}{2}=\frac{15}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{15}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=\frac{15}{2}
Divide -8 by 2.
x^{2}-4x+\left(-2\right)^{2}=\frac{15}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{15}{2}+4
Square -2.
x^{2}-4x+4=\frac{23}{2}
Add \frac{15}{2} to 4.
\left(x-2\right)^{2}=\frac{23}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{23}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{46}}{2} x-2=-\frac{\sqrt{46}}{2}
Simplify.
x=\frac{\sqrt{46}}{2}+2 x=-\frac{\sqrt{46}}{2}+2
Add 2 to both sides of the equation.