Solve for x
x=-4
x=2
Graph
Share
Copied to clipboard
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
Combine -2x and 4x to get 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
Add 1 and 4 to get 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x^{2}+2x+5-x^{2}+9=22
To find the opposite of x^{2}-9, find the opposite of each term.
x^{2}+2x+5+9=22
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+2x+14=22
Add 5 and 9 to get 14.
x^{2}+2x+14-22=0
Subtract 22 from both sides.
x^{2}+2x-8=0
Subtract 22 from 14 to get -8.
a+b=2 ab=-8
To solve the equation, factor x^{2}+2x-8 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,8 -2,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -8.
-1+8=7 -2+4=2
Calculate the sum for each pair.
a=-2 b=4
The solution is the pair that gives sum 2.
\left(x-2\right)\left(x+4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=2 x=-4
To find equation solutions, solve x-2=0 and x+4=0.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
Combine -2x and 4x to get 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
Add 1 and 4 to get 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x^{2}+2x+5-x^{2}+9=22
To find the opposite of x^{2}-9, find the opposite of each term.
x^{2}+2x+5+9=22
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+2x+14=22
Add 5 and 9 to get 14.
x^{2}+2x+14-22=0
Subtract 22 from both sides.
x^{2}+2x-8=0
Subtract 22 from 14 to get -8.
a+b=2 ab=1\left(-8\right)=-8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
-1,8 -2,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -8.
-1+8=7 -2+4=2
Calculate the sum for each pair.
a=-2 b=4
The solution is the pair that gives sum 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
Rewrite x^{2}+2x-8 as \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
Factor out x in the first and 4 in the second group.
\left(x-2\right)\left(x+4\right)
Factor out common term x-2 by using distributive property.
x=2 x=-4
To find equation solutions, solve x-2=0 and x+4=0.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
Combine -2x and 4x to get 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
Add 1 and 4 to get 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x^{2}+2x+5-x^{2}+9=22
To find the opposite of x^{2}-9, find the opposite of each term.
x^{2}+2x+5+9=22
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+2x+14=22
Add 5 and 9 to get 14.
x^{2}+2x+14-22=0
Subtract 22 from both sides.
x^{2}+2x-8=0
Subtract 22 from 14 to get -8.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+32}}{2}
Multiply -4 times -8.
x=\frac{-2±\sqrt{36}}{2}
Add 4 to 32.
x=\frac{-2±6}{2}
Take the square root of 36.
x=\frac{4}{2}
Now solve the equation x=\frac{-2±6}{2} when ± is plus. Add -2 to 6.
x=2
Divide 4 by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{-2±6}{2} when ± is minus. Subtract 6 from -2.
x=-4
Divide -8 by 2.
x=2 x=-4
The equation is now solved.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
Combine -2x and 4x to get 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
Add 1 and 4 to get 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x^{2}+2x+5-x^{2}+9=22
To find the opposite of x^{2}-9, find the opposite of each term.
x^{2}+2x+5+9=22
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+2x+14=22
Add 5 and 9 to get 14.
x^{2}+2x=22-14
Subtract 14 from both sides.
x^{2}+2x=8
Subtract 14 from 22 to get 8.
x^{2}+2x+1^{2}=8+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=8+1
Square 1.
x^{2}+2x+1=9
Add 8 to 1.
\left(x+1\right)^{2}=9
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x+1=3 x+1=-3
Simplify.
x=2 x=-4
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}