( x - ( 6 ) ) ( 180 - 10 ( 52 - x ) ] = 2000
Solve for x
x=6\sqrt{11}+20\approx 39.899748742
x=20-6\sqrt{11}\approx 0.100251258
Graph
Share
Copied to clipboard
\left(x-6\right)\left(180-520+10x\right)=2000
Use the distributive property to multiply -10 by 52-x.
\left(x-6\right)\left(-340+10x\right)=2000
Subtract 520 from 180 to get -340.
-340x+10x^{2}+2040-60x=2000
Apply the distributive property by multiplying each term of x-6 by each term of -340+10x.
-400x+10x^{2}+2040=2000
Combine -340x and -60x to get -400x.
-400x+10x^{2}+2040-2000=0
Subtract 2000 from both sides.
-400x+10x^{2}+40=0
Subtract 2000 from 2040 to get 40.
10x^{2}-400x+40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-400\right)±\sqrt{\left(-400\right)^{2}-4\times 10\times 40}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -400 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-400\right)±\sqrt{160000-4\times 10\times 40}}{2\times 10}
Square -400.
x=\frac{-\left(-400\right)±\sqrt{160000-40\times 40}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-400\right)±\sqrt{160000-1600}}{2\times 10}
Multiply -40 times 40.
x=\frac{-\left(-400\right)±\sqrt{158400}}{2\times 10}
Add 160000 to -1600.
x=\frac{-\left(-400\right)±120\sqrt{11}}{2\times 10}
Take the square root of 158400.
x=\frac{400±120\sqrt{11}}{2\times 10}
The opposite of -400 is 400.
x=\frac{400±120\sqrt{11}}{20}
Multiply 2 times 10.
x=\frac{120\sqrt{11}+400}{20}
Now solve the equation x=\frac{400±120\sqrt{11}}{20} when ± is plus. Add 400 to 120\sqrt{11}.
x=6\sqrt{11}+20
Divide 400+120\sqrt{11} by 20.
x=\frac{400-120\sqrt{11}}{20}
Now solve the equation x=\frac{400±120\sqrt{11}}{20} when ± is minus. Subtract 120\sqrt{11} from 400.
x=20-6\sqrt{11}
Divide 400-120\sqrt{11} by 20.
x=6\sqrt{11}+20 x=20-6\sqrt{11}
The equation is now solved.
\left(x-6\right)\left(180-520+10x\right)=2000
Use the distributive property to multiply -10 by 52-x.
\left(x-6\right)\left(-340+10x\right)=2000
Subtract 520 from 180 to get -340.
-340x+10x^{2}+2040-60x=2000
Apply the distributive property by multiplying each term of x-6 by each term of -340+10x.
-400x+10x^{2}+2040=2000
Combine -340x and -60x to get -400x.
-400x+10x^{2}=2000-2040
Subtract 2040 from both sides.
-400x+10x^{2}=-40
Subtract 2040 from 2000 to get -40.
10x^{2}-400x=-40
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-400x}{10}=-\frac{40}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{400}{10}\right)x=-\frac{40}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-40x=-\frac{40}{10}
Divide -400 by 10.
x^{2}-40x=-4
Divide -40 by 10.
x^{2}-40x+\left(-20\right)^{2}=-4+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-4+400
Square -20.
x^{2}-40x+400=396
Add -4 to 400.
\left(x-20\right)^{2}=396
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{396}
Take the square root of both sides of the equation.
x-20=6\sqrt{11} x-20=-6\sqrt{11}
Simplify.
x=6\sqrt{11}+20 x=20-6\sqrt{11}
Add 20 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}