( x - \frac { 3 - \sqrt { 5 } } { 2 } ) ( x - \frac { \sqrt { 5 } + 3 } { 2 }
Evaluate
x^{2}-3x+1
Factor
\left(x-\frac{3-\sqrt{5}}{2}\right)\left(x-\frac{\sqrt{5}+3}{2}\right)
Graph
Share
Copied to clipboard
\left(\frac{2x}{2}-\frac{3-\sqrt{5}}{2}\right)\left(x-\frac{\sqrt{5}+3}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\frac{2x-\left(3-\sqrt{5}\right)}{2}\left(x-\frac{\sqrt{5}+3}{2}\right)
Since \frac{2x}{2} and \frac{3-\sqrt{5}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-3+\sqrt{5}}{2}\left(x-\frac{\sqrt{5}+3}{2}\right)
Do the multiplications in 2x-\left(3-\sqrt{5}\right).
\frac{2x-3+\sqrt{5}}{2}\left(\frac{2x}{2}-\frac{\sqrt{5}+3}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\frac{2x-3+\sqrt{5}}{2}\times \frac{2x-\left(\sqrt{5}+3\right)}{2}
Since \frac{2x}{2} and \frac{\sqrt{5}+3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-3+\sqrt{5}}{2}\times \frac{2x-\sqrt{5}-3}{2}
Do the multiplications in 2x-\left(\sqrt{5}+3\right).
\frac{\left(2x-3+\sqrt{5}\right)\left(2x-\sqrt{5}-3\right)}{2\times 2}
Multiply \frac{2x-3+\sqrt{5}}{2} times \frac{2x-\sqrt{5}-3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x-3+\sqrt{5}\right)\left(2x-\sqrt{5}-3\right)}{4}
Multiply 2 and 2 to get 4.
\frac{4x^{2}-2x\sqrt{5}-6x-6x+3\sqrt{5}+9+2\sqrt{5}x-\left(\sqrt{5}\right)^{2}-3\sqrt{5}}{4}
Apply the distributive property by multiplying each term of 2x-3+\sqrt{5} by each term of 2x-\sqrt{5}-3.
\frac{4x^{2}-2x\sqrt{5}-12x+3\sqrt{5}+9+2\sqrt{5}x-\left(\sqrt{5}\right)^{2}-3\sqrt{5}}{4}
Combine -6x and -6x to get -12x.
\frac{4x^{2}-12x+3\sqrt{5}+9-\left(\sqrt{5}\right)^{2}-3\sqrt{5}}{4}
Combine -2x\sqrt{5} and 2\sqrt{5}x to get 0.
\frac{4x^{2}-12x+3\sqrt{5}+9-5-3\sqrt{5}}{4}
The square of \sqrt{5} is 5.
\frac{4x^{2}-12x+3\sqrt{5}+4-3\sqrt{5}}{4}
Subtract 5 from 9 to get 4.
\frac{4x^{2}-12x+4}{4}
Combine 3\sqrt{5} and -3\sqrt{5} to get 0.
1-3x+x^{2}
Divide each term of 4x^{2}-12x+4 by 4 to get 1-3x+x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}