Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{2}{5}+\frac{9}{25}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{3}{5}\right)^{2}.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{19}{25}
Add \frac{2}{5} and \frac{9}{25} to get \frac{19}{25}.
x^{2}-\frac{6}{5}x+\frac{9}{25}-\frac{19}{25}=0
Subtract \frac{19}{25} from both sides.
x^{2}-\frac{6}{5}x-\frac{2}{5}=0
Subtract \frac{19}{25} from \frac{9}{25} to get -\frac{2}{5}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\left(-\frac{6}{5}\right)^{2}-4\left(-\frac{2}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{6}{5} for b, and -\frac{2}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{36}{25}-4\left(-\frac{2}{5}\right)}}{2}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{36}{25}+\frac{8}{5}}}{2}
Multiply -4 times -\frac{2}{5}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{76}{25}}}{2}
Add \frac{36}{25} to \frac{8}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{6}{5}\right)±\frac{2\sqrt{19}}{5}}{2}
Take the square root of \frac{76}{25}.
x=\frac{\frac{6}{5}±\frac{2\sqrt{19}}{5}}{2}
The opposite of -\frac{6}{5} is \frac{6}{5}.
x=\frac{2\sqrt{19}+6}{2\times 5}
Now solve the equation x=\frac{\frac{6}{5}±\frac{2\sqrt{19}}{5}}{2} when ± is plus. Add \frac{6}{5} to \frac{2\sqrt{19}}{5}.
x=\frac{\sqrt{19}+3}{5}
Divide \frac{6+2\sqrt{19}}{5} by 2.
x=\frac{6-2\sqrt{19}}{2\times 5}
Now solve the equation x=\frac{\frac{6}{5}±\frac{2\sqrt{19}}{5}}{2} when ± is minus. Subtract \frac{2\sqrt{19}}{5} from \frac{6}{5}.
x=\frac{3-\sqrt{19}}{5}
Divide \frac{6-2\sqrt{19}}{5} by 2.
x=\frac{\sqrt{19}+3}{5} x=\frac{3-\sqrt{19}}{5}
The equation is now solved.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{2}{5}+\frac{9}{25}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{3}{5}\right)^{2}.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{19}{25}
Add \frac{2}{5} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{5}\right)^{2}=\frac{19}{25}
Factor x^{2}-\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{19}{25}}
Take the square root of both sides of the equation.
x-\frac{3}{5}=\frac{\sqrt{19}}{5} x-\frac{3}{5}=-\frac{\sqrt{19}}{5}
Simplify.
x=\frac{\sqrt{19}+3}{5} x=\frac{3-\sqrt{19}}{5}
Add \frac{3}{5} to both sides of the equation.