Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3x+\frac{9}{4}=\frac{1}{3}-\frac{2}{9}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{3}{2}\right)^{2}.
x^{2}-3x+\frac{9}{4}=\frac{1}{9}
Subtract \frac{2}{9} from \frac{1}{3} to get \frac{1}{9}.
x^{2}-3x+\frac{9}{4}-\frac{1}{9}=0
Subtract \frac{1}{9} from both sides.
x^{2}-3x+\frac{77}{36}=0
Subtract \frac{1}{9} from \frac{9}{4} to get \frac{77}{36}.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{77}{36}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and \frac{77}{36} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{77}{36}}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-\frac{77}{9}}}{2}
Multiply -4 times \frac{77}{36}.
x=\frac{-\left(-3\right)±\sqrt{\frac{4}{9}}}{2}
Add 9 to -\frac{77}{9}.
x=\frac{-\left(-3\right)±\frac{2}{3}}{2}
Take the square root of \frac{4}{9}.
x=\frac{3±\frac{2}{3}}{2}
The opposite of -3 is 3.
x=\frac{\frac{11}{3}}{2}
Now solve the equation x=\frac{3±\frac{2}{3}}{2} when ± is plus. Add 3 to \frac{2}{3}.
x=\frac{11}{6}
Divide \frac{11}{3} by 2.
x=\frac{\frac{7}{3}}{2}
Now solve the equation x=\frac{3±\frac{2}{3}}{2} when ± is minus. Subtract \frac{2}{3} from 3.
x=\frac{7}{6}
Divide \frac{7}{3} by 2.
x=\frac{11}{6} x=\frac{7}{6}
The equation is now solved.
x^{2}-3x+\frac{9}{4}=\frac{1}{3}-\frac{2}{9}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{3}{2}\right)^{2}.
x^{2}-3x+\frac{9}{4}=\frac{1}{9}
Subtract \frac{2}{9} from \frac{1}{3} to get \frac{1}{9}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{9}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{1}{3} x-\frac{3}{2}=-\frac{1}{3}
Simplify.
x=\frac{11}{6} x=\frac{7}{6}
Add \frac{3}{2} to both sides of the equation.