Solve for x
x>\frac{3}{8}
Graph
Share
Copied to clipboard
x^{2}-3x+\frac{9}{4}+2x\left(x-\frac{1}{2}\right)<3\left(x^{2}+\frac{1}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{3}{2}\right)^{2}.
x^{2}-3x+\frac{9}{4}+2x^{2}-x<3\left(x^{2}+\frac{1}{4}\right)
Use the distributive property to multiply 2x by x-\frac{1}{2}.
3x^{2}-3x+\frac{9}{4}-x<3\left(x^{2}+\frac{1}{4}\right)
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-4x+\frac{9}{4}<3\left(x^{2}+\frac{1}{4}\right)
Combine -3x and -x to get -4x.
3x^{2}-4x+\frac{9}{4}<3x^{2}+\frac{3}{4}
Use the distributive property to multiply 3 by x^{2}+\frac{1}{4}.
3x^{2}-4x+\frac{9}{4}-3x^{2}<\frac{3}{4}
Subtract 3x^{2} from both sides.
-4x+\frac{9}{4}<\frac{3}{4}
Combine 3x^{2} and -3x^{2} to get 0.
-4x<\frac{3}{4}-\frac{9}{4}
Subtract \frac{9}{4} from both sides.
-4x<-\frac{3}{2}
Subtract \frac{9}{4} from \frac{3}{4} to get -\frac{3}{2}.
x>\frac{-\frac{3}{2}}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x>\frac{-3}{2\left(-4\right)}
Express \frac{-\frac{3}{2}}{-4} as a single fraction.
x>\frac{-3}{-8}
Multiply 2 and -4 to get -8.
x>\frac{3}{8}
Fraction \frac{-3}{-8} can be simplified to \frac{3}{8} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}