Solve for x
x = \frac{39}{10} = 3\frac{9}{10} = 3.9
Graph
Share
Copied to clipboard
x^{2}-\frac{24}{5}x+\frac{144}{25}+\left(\frac{18}{5}\right)^{2}=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{12}{5}\right)^{2}.
x^{2}-\frac{24}{5}x+\frac{144}{25}+\frac{324}{25}=x^{2}
Calculate \frac{18}{5} to the power of 2 and get \frac{324}{25}.
x^{2}-\frac{24}{5}x+\frac{468}{25}=x^{2}
Add \frac{144}{25} and \frac{324}{25} to get \frac{468}{25}.
x^{2}-\frac{24}{5}x+\frac{468}{25}-x^{2}=0
Subtract x^{2} from both sides.
-\frac{24}{5}x+\frac{468}{25}=0
Combine x^{2} and -x^{2} to get 0.
-\frac{24}{5}x=-\frac{468}{25}
Subtract \frac{468}{25} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{468}{25}\left(-\frac{5}{24}\right)
Multiply both sides by -\frac{5}{24}, the reciprocal of -\frac{24}{5}.
x=\frac{39}{10}
Multiply -\frac{468}{25} and -\frac{5}{24} to get \frac{39}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}