Evaluate
\left(\frac{x-1}{x}\right)^{2}\left(x^{2}-4x+1\right)
Expand
x^{2}-6x+10-\frac{6}{x}+\frac{1}{x^{2}}
Graph
Share
Copied to clipboard
\left(\frac{xx}{x}-\frac{1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+12
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\left(\frac{xx-1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+12
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{x^{2}-1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+12
Do the multiplications in xx-1.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}-6\left(x+\frac{1}{x}\right)+12
To raise \frac{x^{2}-1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}-6\left(\frac{xx}{x}+\frac{1}{x}\right)+12
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}-6\times \frac{xx+1}{x}+12
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}-6\times \frac{x^{2}+1}{x}+12
Do the multiplications in xx+1.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}+\frac{-6\left(x^{2}+1\right)}{x}+12
Express -6\times \frac{x^{2}+1}{x} as a single fraction.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}+\frac{-6\left(x^{2}+1\right)x}{x^{2}}+12
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{-6\left(x^{2}+1\right)}{x} times \frac{x}{x}.
\frac{\left(x^{2}-1\right)^{2}-6\left(x^{2}+1\right)x}{x^{2}}+12
Since \frac{\left(x^{2}-1\right)^{2}}{x^{2}} and \frac{-6\left(x^{2}+1\right)x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}-2x^{2}+1-6x^{3}-6x}{x^{2}}+12
Do the multiplications in \left(x^{2}-1\right)^{2}-6\left(x^{2}+1\right)x.
\frac{x^{4}-2x^{2}+1-6x^{3}-6x}{x^{2}}+\frac{12x^{2}}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{x^{2}}{x^{2}}.
\frac{x^{4}-2x^{2}+1-6x^{3}-6x+12x^{2}}{x^{2}}
Since \frac{x^{4}-2x^{2}+1-6x^{3}-6x}{x^{2}} and \frac{12x^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}+10x^{2}+1-6x^{3}-6x}{x^{2}}
Combine like terms in x^{4}-2x^{2}+1-6x^{3}-6x+12x^{2}.
\left(\frac{xx}{x}-\frac{1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+12
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\left(\frac{xx-1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+12
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{x^{2}-1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+12
Do the multiplications in xx-1.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}-6\left(x+\frac{1}{x}\right)+12
To raise \frac{x^{2}-1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}-6\left(\frac{xx}{x}+\frac{1}{x}\right)+12
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}-6\times \frac{xx+1}{x}+12
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}-6\times \frac{x^{2}+1}{x}+12
Do the multiplications in xx+1.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}+\frac{-6\left(x^{2}+1\right)}{x}+12
Express -6\times \frac{x^{2}+1}{x} as a single fraction.
\frac{\left(x^{2}-1\right)^{2}}{x^{2}}+\frac{-6\left(x^{2}+1\right)x}{x^{2}}+12
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{-6\left(x^{2}+1\right)}{x} times \frac{x}{x}.
\frac{\left(x^{2}-1\right)^{2}-6\left(x^{2}+1\right)x}{x^{2}}+12
Since \frac{\left(x^{2}-1\right)^{2}}{x^{2}} and \frac{-6\left(x^{2}+1\right)x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}-2x^{2}+1-6x^{3}-6x}{x^{2}}+12
Do the multiplications in \left(x^{2}-1\right)^{2}-6\left(x^{2}+1\right)x.
\frac{x^{4}-2x^{2}+1-6x^{3}-6x}{x^{2}}+\frac{12x^{2}}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{x^{2}}{x^{2}}.
\frac{x^{4}-2x^{2}+1-6x^{3}-6x+12x^{2}}{x^{2}}
Since \frac{x^{4}-2x^{2}+1-6x^{3}-6x}{x^{2}} and \frac{12x^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}+10x^{2}+1-6x^{3}-6x}{x^{2}}
Combine like terms in x^{4}-2x^{2}+1-6x^{3}-6x+12x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}