Solve for x
x=\frac{5}{9}\approx 0.555555556
Graph
Share
Copied to clipboard
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\left(\frac{2}{5}x-1\right)\left(2-x\right)-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-\frac{1}{3}\right)^{3}.
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\left(\frac{9}{5}x-\frac{2}{5}x^{2}-2\right)-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Use the distributive property to multiply \frac{2}{5}x-1 by 2-x and combine like terms.
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\frac{9}{5}x+\frac{2}{5}x^{2}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
To find the opposite of \frac{9}{5}x-\frac{2}{5}x^{2}-2, find the opposite of each term.
x^{3}-x^{2}-\frac{22}{15}x-\frac{1}{27}+\frac{2}{5}x^{2}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Combine \frac{1}{3}x and -\frac{9}{5}x to get -\frac{22}{15}x.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x-\frac{1}{27}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Combine -x^{2} and \frac{2}{5}x^{2} to get -\frac{3}{5}x^{2}.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Add -\frac{1}{27} and 2 to get \frac{53}{27}.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-\left(\frac{2}{5}x^{2}+3x\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Use the distributive property to multiply x by \frac{2}{5}x+3.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-\frac{2}{5}x^{2}-3x=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
To find the opposite of \frac{2}{5}x^{2}+3x, find the opposite of each term.
x^{3}-x^{2}-\frac{22}{15}x+\frac{53}{27}-3x=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Combine -\frac{3}{5}x^{2} and -\frac{2}{5}x^{2} to get -x^{2}.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Combine -\frac{22}{15}x and -3x to get -\frac{67}{15}x.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{1}{3}\left(2-x\right)-\frac{1}{27}
Use the distributive property to multiply x^{2} by x-1.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{2}{3}+\frac{1}{3}x-\frac{1}{27}
Use the distributive property to multiply -\frac{1}{3} by 2-x.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{19}{27}+\frac{1}{3}x
Subtract \frac{1}{27} from -\frac{2}{3} to get -\frac{19}{27}.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}-x^{3}=-x^{2}-\frac{19}{27}+\frac{1}{3}x
Subtract x^{3} from both sides.
-x^{2}-\frac{67}{15}x+\frac{53}{27}=-x^{2}-\frac{19}{27}+\frac{1}{3}x
Combine x^{3} and -x^{3} to get 0.
-x^{2}-\frac{67}{15}x+\frac{53}{27}+x^{2}=-\frac{19}{27}+\frac{1}{3}x
Add x^{2} to both sides.
-\frac{67}{15}x+\frac{53}{27}=-\frac{19}{27}+\frac{1}{3}x
Combine -x^{2} and x^{2} to get 0.
-\frac{67}{15}x+\frac{53}{27}-\frac{1}{3}x=-\frac{19}{27}
Subtract \frac{1}{3}x from both sides.
-\frac{24}{5}x+\frac{53}{27}=-\frac{19}{27}
Combine -\frac{67}{15}x and -\frac{1}{3}x to get -\frac{24}{5}x.
-\frac{24}{5}x=-\frac{19}{27}-\frac{53}{27}
Subtract \frac{53}{27} from both sides.
-\frac{24}{5}x=-\frac{8}{3}
Subtract \frac{53}{27} from -\frac{19}{27} to get -\frac{8}{3}.
x=-\frac{8}{3}\left(-\frac{5}{24}\right)
Multiply both sides by -\frac{5}{24}, the reciprocal of -\frac{24}{5}.
x=\frac{5}{9}
Multiply -\frac{8}{3} and -\frac{5}{24} to get \frac{5}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}