Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+3\left(x^{2}y-\frac{1}{2}y^{3}\right)+\frac{13}{8}y^{3}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-\frac{1}{2}y\right)^{3}.
x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+3x^{2}y-\frac{3}{2}y^{3}+\frac{13}{8}y^{3}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Use the distributive property to multiply 3 by x^{2}y-\frac{1}{2}y^{3}.
x^{3}+\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}-\frac{3}{2}y^{3}+\frac{13}{8}y^{3}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Combine -\frac{3}{2}x^{2}y and 3x^{2}y to get \frac{3}{2}x^{2}y.
x^{3}+\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{13}{8}y^{3}+\frac{13}{8}y^{3}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Combine -\frac{1}{8}y^{3} and -\frac{3}{2}y^{3} to get -\frac{13}{8}y^{3}.
x^{3}+\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Combine -\frac{13}{8}y^{3} and \frac{13}{8}y^{3} to get 0.
x^{3}+\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{3}{2}yx^{2}-\frac{3}{4}xy^{2}
Use the distributive property to multiply -\frac{3}{2}xy by x+\frac{1}{2}y.
x^{3}+\frac{3}{4}xy^{2}-\frac{3}{4}xy^{2}
Combine \frac{3}{2}x^{2}y and -\frac{3}{2}yx^{2} to get 0.
x^{3}
Combine \frac{3}{4}xy^{2} and -\frac{3}{4}xy^{2} to get 0.
x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+3\left(x^{2}y-\frac{1}{2}y^{3}\right)+\frac{13}{8}y^{3}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-\frac{1}{2}y\right)^{3}.
x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+3x^{2}y-\frac{3}{2}y^{3}+\frac{13}{8}y^{3}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Use the distributive property to multiply 3 by x^{2}y-\frac{1}{2}y^{3}.
x^{3}+\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}-\frac{3}{2}y^{3}+\frac{13}{8}y^{3}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Combine -\frac{3}{2}x^{2}y and 3x^{2}y to get \frac{3}{2}x^{2}y.
x^{3}+\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{13}{8}y^{3}+\frac{13}{8}y^{3}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Combine -\frac{1}{8}y^{3} and -\frac{3}{2}y^{3} to get -\frac{13}{8}y^{3}.
x^{3}+\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{3}{2}xy\left(x+\frac{1}{2}y\right)
Combine -\frac{13}{8}y^{3} and \frac{13}{8}y^{3} to get 0.
x^{3}+\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{3}{2}yx^{2}-\frac{3}{4}xy^{2}
Use the distributive property to multiply -\frac{3}{2}xy by x+\frac{1}{2}y.
x^{3}+\frac{3}{4}xy^{2}-\frac{3}{4}xy^{2}
Combine \frac{3}{2}x^{2}y and -\frac{3}{2}yx^{2} to get 0.
x^{3}
Combine \frac{3}{4}xy^{2} and -\frac{3}{4}xy^{2} to get 0.