Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(x-\frac{\sqrt{2}}{2}\right)^{2}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\left(\frac{2x}{2}-\frac{\sqrt{2}}{2}\right)^{2}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\left(\frac{2x-\sqrt{2}}{2}\right)^{2}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
Since \frac{2x}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
To raise \frac{2x-\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(x-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(x-\frac{\sqrt{2}}{2}\right)^{2}-\left(2x+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(\frac{2x}{2}-\frac{\sqrt{2}}{2}\right)^{2}-\left(2x+\sqrt{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(\frac{2x-\sqrt{2}}{2}\right)^{2}-\left(2x+\sqrt{2}\right)
Since \frac{2x}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(2x+\sqrt{2}\right)
To raise \frac{2x-\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\frac{4x^{2}-4x\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\left(2x+\sqrt{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-\sqrt{2}\right)^{2}.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\frac{4x^{2}-4x\sqrt{2}+2}{2^{2}}-\left(2x+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\frac{4x^{2}-4x\sqrt{2}+2}{4}-\left(2x+\sqrt{2}\right)
Calculate 2 to the power of 2 and get 4.
\frac{\left(2x-\sqrt{2}\right)^{2}}{4}-\frac{4x^{2}-4x\sqrt{2}+2}{4}-\left(2x+\sqrt{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(2x-\sqrt{2}\right)^{2}-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}-\left(2x+\sqrt{2}\right)
Since \frac{\left(2x-\sqrt{2}\right)^{2}}{4} and \frac{4x^{2}-4x\sqrt{2}+2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-4x\sqrt{2}+\left(\sqrt{2}\right)^{2}-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}-\left(2x+\sqrt{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-\sqrt{2}\right)^{2}.
\frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}-\left(2x+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}-2x-\sqrt{2}
To find the opposite of 2x+\sqrt{2}, find the opposite of each term.
\frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}+\frac{4\left(-2x-\sqrt{2}\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x-\sqrt{2} times \frac{4}{4}.
\frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)+4\left(-2x-\sqrt{2}\right)}{4}
Since \frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)}{4} and \frac{4\left(-2x-\sqrt{2}\right)}{4} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-4x\sqrt{2}+2-4x^{2}+4x\sqrt{2}-2-8x-4\sqrt{2}}{4}
Do the multiplications in 4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)+4\left(-2x-\sqrt{2}\right).
\frac{-4\sqrt{2}-8x}{4}
Combine like terms in 4x^{2}-4x\sqrt{2}+2-4x^{2}+4x\sqrt{2}-2-8x-4\sqrt{2}.
-\sqrt{2}-2x
Divide each term of -4\sqrt{2}-8x by 4 to get -\sqrt{2}-2x.