Evaluate
-2x-\sqrt{2}
Differentiate w.r.t. x
-2
Graph
Share
Copied to clipboard
\left(x-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(x-\frac{\sqrt{2}}{2}\right)^{2}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\left(\frac{2x}{2}-\frac{\sqrt{2}}{2}\right)^{2}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\left(\frac{2x-\sqrt{2}}{2}\right)^{2}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
Since \frac{2x}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(x-\frac{1}{\sqrt{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
To raise \frac{2x-\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(x-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}-\left(2x+\sqrt{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(x-\frac{\sqrt{2}}{2}\right)^{2}-\left(2x+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(\frac{2x}{2}-\frac{\sqrt{2}}{2}\right)^{2}-\left(2x+\sqrt{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(\frac{2x-\sqrt{2}}{2}\right)^{2}-\left(2x+\sqrt{2}\right)
Since \frac{2x}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\left(2x+\sqrt{2}\right)
To raise \frac{2x-\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\frac{4x^{2}-4x\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\left(2x+\sqrt{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-\sqrt{2}\right)^{2}.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\frac{4x^{2}-4x\sqrt{2}+2}{2^{2}}-\left(2x+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\frac{\left(2x-\sqrt{2}\right)^{2}}{2^{2}}-\frac{4x^{2}-4x\sqrt{2}+2}{4}-\left(2x+\sqrt{2}\right)
Calculate 2 to the power of 2 and get 4.
\frac{\left(2x-\sqrt{2}\right)^{2}}{4}-\frac{4x^{2}-4x\sqrt{2}+2}{4}-\left(2x+\sqrt{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(2x-\sqrt{2}\right)^{2}-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}-\left(2x+\sqrt{2}\right)
Since \frac{\left(2x-\sqrt{2}\right)^{2}}{4} and \frac{4x^{2}-4x\sqrt{2}+2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-4x\sqrt{2}+\left(\sqrt{2}\right)^{2}-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}-\left(2x+\sqrt{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-\sqrt{2}\right)^{2}.
\frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}-\left(2x+\sqrt{2}\right)
The square of \sqrt{2} is 2.
\frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}-2x-\sqrt{2}
To find the opposite of 2x+\sqrt{2}, find the opposite of each term.
\frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)}{4}+\frac{4\left(-2x-\sqrt{2}\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x-\sqrt{2} times \frac{4}{4}.
\frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)+4\left(-2x-\sqrt{2}\right)}{4}
Since \frac{4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)}{4} and \frac{4\left(-2x-\sqrt{2}\right)}{4} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-4x\sqrt{2}+2-4x^{2}+4x\sqrt{2}-2-8x-4\sqrt{2}}{4}
Do the multiplications in 4x^{2}-4x\sqrt{2}+2-\left(4x^{2}-4x\sqrt{2}+2\right)+4\left(-2x-\sqrt{2}\right).
\frac{-4\sqrt{2}-8x}{4}
Combine like terms in 4x^{2}-4x\sqrt{2}+2-4x^{2}+4x\sqrt{2}-2-8x-4\sqrt{2}.
-\sqrt{2}-2x
Divide each term of -4\sqrt{2}-8x by 4 to get -\sqrt{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}