Solve for p
p=x^{2}\left(x^{2}-2x-1\right)
Graph
Share
Copied to clipboard
x^{4}-2x^{3}-x^{2}+x-p=x
Swap sides so that all variable terms are on the left hand side.
-2x^{3}-x^{2}+x-p=x-x^{4}
Subtract x^{4} from both sides.
-x^{2}+x-p=x-x^{4}+2x^{3}
Add 2x^{3} to both sides.
x-p=x-x^{4}+2x^{3}+x^{2}
Add x^{2} to both sides.
-p=x-x^{4}+2x^{3}+x^{2}-x
Subtract x from both sides.
-p=-x^{4}+2x^{3}+x^{2}
Combine x and -x to get 0.
-p=x^{2}+2x^{3}-x^{4}
The equation is in standard form.
\frac{-p}{-1}=\frac{x^{2}\left(1+2x-x^{2}\right)}{-1}
Divide both sides by -1.
p=\frac{x^{2}\left(1+2x-x^{2}\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
p=x^{4}-2x^{3}-x^{2}
Divide x^{2}\left(-x^{2}+2x+1\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}