Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-x^{2}=-15x
Subtract x^{2} from both sides.
x-x^{2}+15x=0
Add 15x to both sides.
16x-x^{2}=0
Combine x and 15x to get 16x.
x\left(16-x\right)=0
Factor out x.
x=0 x=16
To find equation solutions, solve x=0 and 16-x=0.
x-x^{2}=-15x
Subtract x^{2} from both sides.
x-x^{2}+15x=0
Add 15x to both sides.
16x-x^{2}=0
Combine x and 15x to get 16x.
-x^{2}+16x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 16 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±16}{2\left(-1\right)}
Take the square root of 16^{2}.
x=\frac{-16±16}{-2}
Multiply 2 times -1.
x=\frac{0}{-2}
Now solve the equation x=\frac{-16±16}{-2} when ± is plus. Add -16 to 16.
x=0
Divide 0 by -2.
x=-\frac{32}{-2}
Now solve the equation x=\frac{-16±16}{-2} when ± is minus. Subtract 16 from -16.
x=16
Divide -32 by -2.
x=0 x=16
The equation is now solved.
x-x^{2}=-15x
Subtract x^{2} from both sides.
x-x^{2}+15x=0
Add 15x to both sides.
16x-x^{2}=0
Combine x and 15x to get 16x.
-x^{2}+16x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+16x}{-1}=\frac{0}{-1}
Divide both sides by -1.
x^{2}+\frac{16}{-1}x=\frac{0}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-16x=\frac{0}{-1}
Divide 16 by -1.
x^{2}-16x=0
Divide 0 by -1.
x^{2}-16x+\left(-8\right)^{2}=\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=64
Square -8.
\left(x-8\right)^{2}=64
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
x-8=8 x-8=-8
Simplify.
x=16 x=0
Add 8 to both sides of the equation.