Solve for g
g=\frac{x^{2}-4}{2}
x\neq 0
Solve for x (complex solution)
x=-\sqrt{2\left(g+2\right)}
x=\sqrt{2\left(g+2\right)}\text{, }g\neq -2
Solve for x
x=\sqrt{2\left(g+2\right)}
x=-\sqrt{2\left(g+2\right)}\text{, }g>-2
Graph
Share
Copied to clipboard
xx=xx+x\times 4+2xg-x^{2}x
Multiply both sides of the equation by x.
x^{2}=xx+x\times 4+2xg-x^{2}x
Multiply x and x to get x^{2}.
x^{2}=x^{2}+x\times 4+2xg-x^{2}x
Multiply x and x to get x^{2}.
x^{2}=x^{2}+x\times 4+2xg-x^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{2}+x\times 4+2xg-x^{3}=x^{2}
Swap sides so that all variable terms are on the left hand side.
x\times 4+2xg-x^{3}=x^{2}-x^{2}
Subtract x^{2} from both sides.
x\times 4+2xg-x^{3}=0
Combine x^{2} and -x^{2} to get 0.
2xg-x^{3}=-x\times 4
Subtract x\times 4 from both sides. Anything subtracted from zero gives its negation.
2xg=-x\times 4+x^{3}
Add x^{3} to both sides.
2xg=-4x+x^{3}
Multiply -1 and 4 to get -4.
2xg=x^{3}-4x
The equation is in standard form.
\frac{2xg}{2x}=\frac{x^{3}-4x}{2x}
Divide both sides by 2x.
g=\frac{x^{3}-4x}{2x}
Dividing by 2x undoes the multiplication by 2x.
g=\frac{x^{2}}{2}-2
Divide x^{3}-4x by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}