Solve for q
\left\{\begin{matrix}\\q=-\frac{r-1}{x^{2}+1}\text{, }&\text{unconditionally}\\q\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for r
\left\{\begin{matrix}\\r=1-q-qx^{2}\text{, }&\text{unconditionally}\\r\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Share
Copied to clipboard
x=qx^{3}+qx+rx
Use the distributive property to multiply qx by x^{2}+1.
qx^{3}+qx+rx=x
Swap sides so that all variable terms are on the left hand side.
qx^{3}+qx=x-rx
Subtract rx from both sides.
\left(x^{3}+x\right)q=x-rx
Combine all terms containing q.
\frac{\left(x^{3}+x\right)q}{x^{3}+x}=\frac{x-rx}{x^{3}+x}
Divide both sides by x^{3}+x.
q=\frac{x-rx}{x^{3}+x}
Dividing by x^{3}+x undoes the multiplication by x^{3}+x.
q=\frac{1-r}{x^{2}+1}
Divide x-xr by x^{3}+x.
x=qx^{3}+qx+rx
Use the distributive property to multiply qx by x^{2}+1.
qx^{3}+qx+rx=x
Swap sides so that all variable terms are on the left hand side.
qx+rx=x-qx^{3}
Subtract qx^{3} from both sides.
rx=x-qx^{3}-qx
Subtract qx from both sides.
rx=-qx^{3}-qx+x
Reorder the terms.
xr=x-qx-qx^{3}
The equation is in standard form.
\frac{xr}{x}=\frac{x-qx-qx^{3}}{x}
Divide both sides by x.
r=\frac{x-qx-qx^{3}}{x}
Dividing by x undoes the multiplication by x.
r=1-q-qx^{2}
Divide -qx^{3}-xq+x by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}