Solve for a (complex solution)
a=\frac{x}{b^{x}}
x=0\text{ or }b\neq 0
Solve for a
a=\frac{x}{b^{x}}
b>0\text{ or }\left(Denominator(x)\text{bmod}2=1\text{ and }b<0\right)
Solve for b (complex solution)
\left\{\begin{matrix}b=e^{-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}+\frac{arg(\frac{x}{a})Im(x)+iarg(\frac{x}{a})Re(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\times \left(\frac{|x|}{|a|}\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\text{, }n_{1}\in \mathrm{Z}\text{, }&a\neq 0\\b\in \mathrm{C}\text{, }&x=0\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ab^{x}=x
Swap sides so that all variable terms are on the left hand side.
b^{x}a=x
The equation is in standard form.
\frac{b^{x}a}{b^{x}}=\frac{x}{b^{x}}
Divide both sides by b^{x}.
a=\frac{x}{b^{x}}
Dividing by b^{x} undoes the multiplication by b^{x}.
ab^{x}=x
Swap sides so that all variable terms are on the left hand side.
b^{x}a=x
The equation is in standard form.
\frac{b^{x}a}{b^{x}}=\frac{x}{b^{x}}
Divide both sides by b^{x}.
a=\frac{x}{b^{x}}
Dividing by b^{x} undoes the multiplication by b^{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}