Solve for r
r=\frac{5\left(2x\cos(x)+3\sin(2x)-10\sin(x)\right)}{43\cos(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
Share
Copied to clipboard
5\tan(x)-3\sin(x)+4.3r=x
Swap sides so that all variable terms are on the left hand side.
4.3r=x-\left(5\tan(x)-3\sin(x)\right)
Subtract 5\tan(x)-3\sin(x) from both sides.
4.3r=x-5\tan(x)+3\sin(x)
To find the opposite of 5\tan(x)-3\sin(x), find the opposite of each term.
4.3r=3\sin(x)-5\tan(x)+x
The equation is in standard form.
\frac{4.3r}{4.3}=\frac{\sin(x)\left(-\frac{5}{\cos(x)}+3\right)+x}{4.3}
Divide both sides of the equation by 4.3, which is the same as multiplying both sides by the reciprocal of the fraction.
r=\frac{\sin(x)\left(-\frac{5}{\cos(x)}+3\right)+x}{4.3}
Dividing by 4.3 undoes the multiplication by 4.3.
r=\frac{10\left(\sin(x)\left(-\frac{5}{\cos(x)}+3\right)+x\right)}{43}
Divide x+\sin(x)\left(3-\frac{5}{\cos(x)}\right) by 4.3 by multiplying x+\sin(x)\left(3-\frac{5}{\cos(x)}\right) by the reciprocal of 4.3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}