Solve for x
x = \frac{\sqrt{10} + 4}{3} \approx 2.387425887
x=\frac{4-\sqrt{10}}{3}\approx 0.27924078
Graph
Share
Copied to clipboard
x-3x^{2}=-7x+2
Subtract 3x^{2} from both sides.
x-3x^{2}+7x=2
Add 7x to both sides.
8x-3x^{2}=2
Combine x and 7x to get 8x.
8x-3x^{2}-2=0
Subtract 2 from both sides.
-3x^{2}+8x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 8 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Square 8.
x=\frac{-8±\sqrt{64+12\left(-2\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-8±\sqrt{64-24}}{2\left(-3\right)}
Multiply 12 times -2.
x=\frac{-8±\sqrt{40}}{2\left(-3\right)}
Add 64 to -24.
x=\frac{-8±2\sqrt{10}}{2\left(-3\right)}
Take the square root of 40.
x=\frac{-8±2\sqrt{10}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{10}-8}{-6}
Now solve the equation x=\frac{-8±2\sqrt{10}}{-6} when ± is plus. Add -8 to 2\sqrt{10}.
x=\frac{4-\sqrt{10}}{3}
Divide -8+2\sqrt{10} by -6.
x=\frac{-2\sqrt{10}-8}{-6}
Now solve the equation x=\frac{-8±2\sqrt{10}}{-6} when ± is minus. Subtract 2\sqrt{10} from -8.
x=\frac{\sqrt{10}+4}{3}
Divide -8-2\sqrt{10} by -6.
x=\frac{4-\sqrt{10}}{3} x=\frac{\sqrt{10}+4}{3}
The equation is now solved.
x-3x^{2}=-7x+2
Subtract 3x^{2} from both sides.
x-3x^{2}+7x=2
Add 7x to both sides.
8x-3x^{2}=2
Combine x and 7x to get 8x.
-3x^{2}+8x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+8x}{-3}=\frac{2}{-3}
Divide both sides by -3.
x^{2}+\frac{8}{-3}x=\frac{2}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{8}{3}x=\frac{2}{-3}
Divide 8 by -3.
x^{2}-\frac{8}{3}x=-\frac{2}{3}
Divide 2 by -3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{2}{3}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{2}{3}+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{10}{9}
Add -\frac{2}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=\frac{10}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{\sqrt{10}}{3} x-\frac{4}{3}=-\frac{\sqrt{10}}{3}
Simplify.
x=\frac{\sqrt{10}+4}{3} x=\frac{4-\sqrt{10}}{3}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}