Solve for x
x = \frac{\sqrt{73} + 7}{6} \approx 2.590667291
x=\frac{7-\sqrt{73}}{6}\approx -0.257333958
Graph
Share
Copied to clipboard
x-3x^{2}=-6x-2
Subtract 3x^{2} from both sides.
x-3x^{2}+6x=-2
Add 6x to both sides.
7x-3x^{2}=-2
Combine x and 6x to get 7x.
7x-3x^{2}+2=0
Add 2 to both sides.
-3x^{2}+7x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-3\right)\times 2}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-3\right)\times 2}}{2\left(-3\right)}
Square 7.
x=\frac{-7±\sqrt{49+12\times 2}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-7±\sqrt{49+24}}{2\left(-3\right)}
Multiply 12 times 2.
x=\frac{-7±\sqrt{73}}{2\left(-3\right)}
Add 49 to 24.
x=\frac{-7±\sqrt{73}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{73}-7}{-6}
Now solve the equation x=\frac{-7±\sqrt{73}}{-6} when ± is plus. Add -7 to \sqrt{73}.
x=\frac{7-\sqrt{73}}{6}
Divide -7+\sqrt{73} by -6.
x=\frac{-\sqrt{73}-7}{-6}
Now solve the equation x=\frac{-7±\sqrt{73}}{-6} when ± is minus. Subtract \sqrt{73} from -7.
x=\frac{\sqrt{73}+7}{6}
Divide -7-\sqrt{73} by -6.
x=\frac{7-\sqrt{73}}{6} x=\frac{\sqrt{73}+7}{6}
The equation is now solved.
x-3x^{2}=-6x-2
Subtract 3x^{2} from both sides.
x-3x^{2}+6x=-2
Add 6x to both sides.
7x-3x^{2}=-2
Combine x and 6x to get 7x.
-3x^{2}+7x=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+7x}{-3}=-\frac{2}{-3}
Divide both sides by -3.
x^{2}+\frac{7}{-3}x=-\frac{2}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{7}{3}x=-\frac{2}{-3}
Divide 7 by -3.
x^{2}-\frac{7}{3}x=\frac{2}{3}
Divide -2 by -3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{2}{3}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{73}{36}
Add \frac{2}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{6}\right)^{2}=\frac{73}{36}
Factor x^{2}-\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{73}{36}}
Take the square root of both sides of the equation.
x-\frac{7}{6}=\frac{\sqrt{73}}{6} x-\frac{7}{6}=-\frac{\sqrt{73}}{6}
Simplify.
x=\frac{\sqrt{73}+7}{6} x=\frac{7-\sqrt{73}}{6}
Add \frac{7}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}