Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-3x^{2}=-4x+\frac{11}{5}
Subtract 3x^{2} from both sides.
x-3x^{2}+4x=\frac{11}{5}
Add 4x to both sides.
5x-3x^{2}=\frac{11}{5}
Combine x and 4x to get 5x.
5x-3x^{2}-\frac{11}{5}=0
Subtract \frac{11}{5} from both sides.
-3x^{2}+5x-\frac{11}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-3\right)\left(-\frac{11}{5}\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 5 for b, and -\frac{11}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-3\right)\left(-\frac{11}{5}\right)}}{2\left(-3\right)}
Square 5.
x=\frac{-5±\sqrt{25+12\left(-\frac{11}{5}\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-5±\sqrt{25-\frac{132}{5}}}{2\left(-3\right)}
Multiply 12 times -\frac{11}{5}.
x=\frac{-5±\sqrt{-\frac{7}{5}}}{2\left(-3\right)}
Add 25 to -\frac{132}{5}.
x=\frac{-5±\frac{\sqrt{35}i}{5}}{2\left(-3\right)}
Take the square root of -\frac{7}{5}.
x=\frac{-5±\frac{\sqrt{35}i}{5}}{-6}
Multiply 2 times -3.
x=\frac{\frac{\sqrt{35}i}{5}-5}{-6}
Now solve the equation x=\frac{-5±\frac{\sqrt{35}i}{5}}{-6} when ± is plus. Add -5 to \frac{i\sqrt{35}}{5}.
x=-\frac{\sqrt{35}i}{30}+\frac{5}{6}
Divide -5+\frac{i\sqrt{35}}{5} by -6.
x=\frac{-\frac{\sqrt{35}i}{5}-5}{-6}
Now solve the equation x=\frac{-5±\frac{\sqrt{35}i}{5}}{-6} when ± is minus. Subtract \frac{i\sqrt{35}}{5} from -5.
x=\frac{\sqrt{35}i}{30}+\frac{5}{6}
Divide -5-\frac{i\sqrt{35}}{5} by -6.
x=-\frac{\sqrt{35}i}{30}+\frac{5}{6} x=\frac{\sqrt{35}i}{30}+\frac{5}{6}
The equation is now solved.
x-3x^{2}=-4x+\frac{11}{5}
Subtract 3x^{2} from both sides.
x-3x^{2}+4x=\frac{11}{5}
Add 4x to both sides.
5x-3x^{2}=\frac{11}{5}
Combine x and 4x to get 5x.
-3x^{2}+5x=\frac{11}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+5x}{-3}=\frac{\frac{11}{5}}{-3}
Divide both sides by -3.
x^{2}+\frac{5}{-3}x=\frac{\frac{11}{5}}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{5}{3}x=\frac{\frac{11}{5}}{-3}
Divide 5 by -3.
x^{2}-\frac{5}{3}x=-\frac{11}{15}
Divide \frac{11}{5} by -3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{11}{15}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{11}{15}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{7}{180}
Add -\frac{11}{15} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{6}\right)^{2}=-\frac{7}{180}
Factor x^{2}-\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{7}{180}}
Take the square root of both sides of the equation.
x-\frac{5}{6}=\frac{\sqrt{35}i}{30} x-\frac{5}{6}=-\frac{\sqrt{35}i}{30}
Simplify.
x=\frac{\sqrt{35}i}{30}+\frac{5}{6} x=-\frac{\sqrt{35}i}{30}+\frac{5}{6}
Add \frac{5}{6} to both sides of the equation.