Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-3x^{2}=-3x-6
Subtract 3x^{2} from both sides.
x-3x^{2}+3x=-6
Add 3x to both sides.
4x-3x^{2}=-6
Combine x and 3x to get 4x.
4x-3x^{2}+6=0
Add 6 to both sides.
-3x^{2}+4x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 4 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-3\right)\times 6}}{2\left(-3\right)}
Square 4.
x=\frac{-4±\sqrt{16+12\times 6}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-4±\sqrt{16+72}}{2\left(-3\right)}
Multiply 12 times 6.
x=\frac{-4±\sqrt{88}}{2\left(-3\right)}
Add 16 to 72.
x=\frac{-4±2\sqrt{22}}{2\left(-3\right)}
Take the square root of 88.
x=\frac{-4±2\sqrt{22}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{22}-4}{-6}
Now solve the equation x=\frac{-4±2\sqrt{22}}{-6} when ± is plus. Add -4 to 2\sqrt{22}.
x=\frac{2-\sqrt{22}}{3}
Divide -4+2\sqrt{22} by -6.
x=\frac{-2\sqrt{22}-4}{-6}
Now solve the equation x=\frac{-4±2\sqrt{22}}{-6} when ± is minus. Subtract 2\sqrt{22} from -4.
x=\frac{\sqrt{22}+2}{3}
Divide -4-2\sqrt{22} by -6.
x=\frac{2-\sqrt{22}}{3} x=\frac{\sqrt{22}+2}{3}
The equation is now solved.
x-3x^{2}=-3x-6
Subtract 3x^{2} from both sides.
x-3x^{2}+3x=-6
Add 3x to both sides.
4x-3x^{2}=-6
Combine x and 3x to get 4x.
-3x^{2}+4x=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+4x}{-3}=-\frac{6}{-3}
Divide both sides by -3.
x^{2}+\frac{4}{-3}x=-\frac{6}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{4}{3}x=-\frac{6}{-3}
Divide 4 by -3.
x^{2}-\frac{4}{3}x=2
Divide -6 by -3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=2+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=2+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{22}{9}
Add 2 to \frac{4}{9}.
\left(x-\frac{2}{3}\right)^{2}=\frac{22}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{22}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{\sqrt{22}}{3} x-\frac{2}{3}=-\frac{\sqrt{22}}{3}
Simplify.
x=\frac{\sqrt{22}+2}{3} x=\frac{2-\sqrt{22}}{3}
Add \frac{2}{3} to both sides of the equation.