Solve for x
x = \frac{\sqrt{589} + 7}{6} \approx 5.2115537
x=\frac{7-\sqrt{589}}{6}\approx -2.878220367
Graph
Share
Copied to clipboard
x=\left(3x-15\right)\left(x+3\right)
Use the distributive property to multiply 3 by x-5.
x=3x^{2}-6x-45
Use the distributive property to multiply 3x-15 by x+3 and combine like terms.
x-3x^{2}=-6x-45
Subtract 3x^{2} from both sides.
x-3x^{2}+6x=-45
Add 6x to both sides.
7x-3x^{2}=-45
Combine x and 6x to get 7x.
7x-3x^{2}+45=0
Add 45 to both sides.
-3x^{2}+7x+45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-3\right)\times 45}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 7 for b, and 45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-3\right)\times 45}}{2\left(-3\right)}
Square 7.
x=\frac{-7±\sqrt{49+12\times 45}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-7±\sqrt{49+540}}{2\left(-3\right)}
Multiply 12 times 45.
x=\frac{-7±\sqrt{589}}{2\left(-3\right)}
Add 49 to 540.
x=\frac{-7±\sqrt{589}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{589}-7}{-6}
Now solve the equation x=\frac{-7±\sqrt{589}}{-6} when ± is plus. Add -7 to \sqrt{589}.
x=\frac{7-\sqrt{589}}{6}
Divide -7+\sqrt{589} by -6.
x=\frac{-\sqrt{589}-7}{-6}
Now solve the equation x=\frac{-7±\sqrt{589}}{-6} when ± is minus. Subtract \sqrt{589} from -7.
x=\frac{\sqrt{589}+7}{6}
Divide -7-\sqrt{589} by -6.
x=\frac{7-\sqrt{589}}{6} x=\frac{\sqrt{589}+7}{6}
The equation is now solved.
x=\left(3x-15\right)\left(x+3\right)
Use the distributive property to multiply 3 by x-5.
x=3x^{2}-6x-45
Use the distributive property to multiply 3x-15 by x+3 and combine like terms.
x-3x^{2}=-6x-45
Subtract 3x^{2} from both sides.
x-3x^{2}+6x=-45
Add 6x to both sides.
7x-3x^{2}=-45
Combine x and 6x to get 7x.
-3x^{2}+7x=-45
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+7x}{-3}=-\frac{45}{-3}
Divide both sides by -3.
x^{2}+\frac{7}{-3}x=-\frac{45}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{7}{3}x=-\frac{45}{-3}
Divide 7 by -3.
x^{2}-\frac{7}{3}x=15
Divide -45 by -3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=15+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{3}x+\frac{49}{36}=15+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{589}{36}
Add 15 to \frac{49}{36}.
\left(x-\frac{7}{6}\right)^{2}=\frac{589}{36}
Factor x^{2}-\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{589}{36}}
Take the square root of both sides of the equation.
x-\frac{7}{6}=\frac{\sqrt{589}}{6} x-\frac{7}{6}=-\frac{\sqrt{589}}{6}
Simplify.
x=\frac{\sqrt{589}+7}{6} x=\frac{7-\sqrt{589}}{6}
Add \frac{7}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}