Solve for x
x=\frac{\sqrt{241}-41}{6}\approx -4.245970884
x=\frac{-\sqrt{241}-41}{6}\approx -9.420695783
Graph
Share
Copied to clipboard
x=3\left(x^{2}+14x+49\right)-27
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
x=3x^{2}+42x+147-27
Use the distributive property to multiply 3 by x^{2}+14x+49.
x=3x^{2}+42x+120
Subtract 27 from 147 to get 120.
x-3x^{2}=42x+120
Subtract 3x^{2} from both sides.
x-3x^{2}-42x=120
Subtract 42x from both sides.
-41x-3x^{2}=120
Combine x and -42x to get -41x.
-41x-3x^{2}-120=0
Subtract 120 from both sides.
-3x^{2}-41x-120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\left(-3\right)\left(-120\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -41 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-41\right)±\sqrt{1681-4\left(-3\right)\left(-120\right)}}{2\left(-3\right)}
Square -41.
x=\frac{-\left(-41\right)±\sqrt{1681+12\left(-120\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-41\right)±\sqrt{1681-1440}}{2\left(-3\right)}
Multiply 12 times -120.
x=\frac{-\left(-41\right)±\sqrt{241}}{2\left(-3\right)}
Add 1681 to -1440.
x=\frac{41±\sqrt{241}}{2\left(-3\right)}
The opposite of -41 is 41.
x=\frac{41±\sqrt{241}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{241}+41}{-6}
Now solve the equation x=\frac{41±\sqrt{241}}{-6} when ± is plus. Add 41 to \sqrt{241}.
x=\frac{-\sqrt{241}-41}{6}
Divide 41+\sqrt{241} by -6.
x=\frac{41-\sqrt{241}}{-6}
Now solve the equation x=\frac{41±\sqrt{241}}{-6} when ± is minus. Subtract \sqrt{241} from 41.
x=\frac{\sqrt{241}-41}{6}
Divide 41-\sqrt{241} by -6.
x=\frac{-\sqrt{241}-41}{6} x=\frac{\sqrt{241}-41}{6}
The equation is now solved.
x=3\left(x^{2}+14x+49\right)-27
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
x=3x^{2}+42x+147-27
Use the distributive property to multiply 3 by x^{2}+14x+49.
x=3x^{2}+42x+120
Subtract 27 from 147 to get 120.
x-3x^{2}=42x+120
Subtract 3x^{2} from both sides.
x-3x^{2}-42x=120
Subtract 42x from both sides.
-41x-3x^{2}=120
Combine x and -42x to get -41x.
-3x^{2}-41x=120
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-41x}{-3}=\frac{120}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{41}{-3}\right)x=\frac{120}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{41}{3}x=\frac{120}{-3}
Divide -41 by -3.
x^{2}+\frac{41}{3}x=-40
Divide 120 by -3.
x^{2}+\frac{41}{3}x+\left(\frac{41}{6}\right)^{2}=-40+\left(\frac{41}{6}\right)^{2}
Divide \frac{41}{3}, the coefficient of the x term, by 2 to get \frac{41}{6}. Then add the square of \frac{41}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{41}{3}x+\frac{1681}{36}=-40+\frac{1681}{36}
Square \frac{41}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{41}{3}x+\frac{1681}{36}=\frac{241}{36}
Add -40 to \frac{1681}{36}.
\left(x+\frac{41}{6}\right)^{2}=\frac{241}{36}
Factor x^{2}+\frac{41}{3}x+\frac{1681}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{41}{6}\right)^{2}}=\sqrt{\frac{241}{36}}
Take the square root of both sides of the equation.
x+\frac{41}{6}=\frac{\sqrt{241}}{6} x+\frac{41}{6}=-\frac{\sqrt{241}}{6}
Simplify.
x=\frac{\sqrt{241}-41}{6} x=\frac{-\sqrt{241}-41}{6}
Subtract \frac{41}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}